Observability of a sharp Majorana transition in a few-body model (original) (raw)
Abstract
We propose experimentally observable signatures of topological Majorana quasiparticles in the few-body limit of the interacting cold-atom model of Iemini et al.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (42)
- N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological bands for ultracold atoms, Rev. Mod. Phys. 91, 015005 (2019).
- F. Schäfer, T. Fukuhara, S. Sugawa, Y. Takasu, and Y. Takahashi, Tools for quantum simulation with ultracold atoms in optical lattices, Nat. Rev. Phys. 2, 411 (2020).
- More specifically, these are the strong zero modes described in [4] and studied in [5-7] to name just a few references.
- P. Fendley, Strong zero modes and eigenstate phase transi- tions in the XYZ/interacting Majorana chain, J. Phys. A: Math. Theor. 49, 30LT01 (2016).
- I. A. Maceira and F. Mila, Infinite coherence time of edge spins in finite-length chains, Phys. Rev. B 97, 064424 (2018).
- J. Kemp, N. Y. Yao, C. R. Laumann, and P. Fendley, Long coherence times for edge spins, J. Stat. Mech.: Theory Exp. (2017) 063105.
- C. Monthus, Even and odd normalized zero modes in random interacting Majorana models respecting the parity P and the time-reversal-symmetry T, J. Phys. A: Math. Theor. 51, 265303 (2018).
- A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys.-Usp. 44, 131 (2001).
- F. Iemini, L. Mazza, L. Fallani, P. Zoller, R. Fazio, and M. Dalmonte, Majorana Quasiparticle Protected by Z 2 Angular Momentum Conservation, Phys. Rev. Lett. 118, 200404 (2017).
- X. Zhou, J.-S. Pan, Z.-X. Liu, W. Zhang, W. Yi, G. Chen, and S. Jia, Symmetry-Protected Topological States for Interacting Fermions in Alkaline-Earth-Like Atoms, Phys. Rev. Lett. 119, 185701 (2017).
- F. Iemini, L. Mazza, D. Rossini, R. Fazio, and S. Diehl, Local- ized Majorana-Like Modes in a Number-Conserving Setting: An Exactly Solvable Model, Phys. Rev. Lett. 115, 156402 (2015).
- N. Lang and H. P. Büchler, Topological states in a microscopic model of interacting fermions, Phys. Rev. B 92, 041118(R) (2015).
- K. Guther, N. Lang, and H. P. Büchler, Ising anyonic topologi- cal phase of interacting fermions in one dimensions, Phys. Rev. B 96, 121109(R) (2017).
- C. V. Kraus, M. Dalmonte, M. A. Baranov, A. M. Läuchli, and P. Zoller, Majorana Edge States in Atomic Wires Coupled by Pair Hopping, Phys. Rev. Lett. 111, 173004 (2013).
- L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Majo- rana Fermions in Equilibrium and Driven Cold Atom Quantum Wires, Phys. Rev. Lett. 106, 220402 (2011).
- M. Cheng and H.-H. Tu, Majorana edge states in interact- ing two-chain ladders of fermions, Phys. Rev. B 84, 094503 (2011).
- L. Fidkowski, R. M. Lutchyn, C. Nayak, and M. P. A. Fisher, Majorana zero modes in one-dimensional quantum wires with- out long-ranged superconducting order, Phys. Rev. B 84, 195436 (2011).
- G. Ortiz, J. Dukelsky, E. Cobanera, C. Esebbag, and C. Beenakker, Many-Body Characterization of Particle- Conserving Topological Superfluids, Phys. Rev. Lett. 113, 267002 (2014).
- R.-X. Zhang and C.-X. Liu, Crystalline Symmetry-Protected Majorana Mode in Number-Conserving Dirac Semimetal Nanowires, Phys. Rev. Lett. 120, 156802 (2018).
- J. D. Sau, B. I. Halperin, K. Flensberg, and S. Das Sarma, Num- ber conserving theory for topologically protected degeneracy in one-dimensional fermions, Phys. Rev. B 84, 144509 (2011).
- J. Ruhman, E. Berg, and E. Altman, Topological States in a One-Dimensional Fermi Gas with Attractive Interaction, Phys. Rev. Lett. 114, 100401 (2015).
- J. Ruhman and E. Altman, Topological degeneracy and pairing in a one-dimensional gas of spinless fermions, Phys. Rev. B 96, 085133 (2017).
- P. Zhang and F. Nori, Majorana bound states in a disordered quantum dot chain, New J. Phys. 18, 043033 (2016).
- G. Ortiz and E. Cobanera, What is a particle-conserving topological superfluid? The fate of Majorana modes beyond mean-field theory, Ann. Phys. (NY) 372, 357 (2016).
- L. Fidkowski and A. Kitaev, Effects of interactions of the topo- logical classification of free fermion systems, Phys. Rev. B 81, 134509 (2010).
- C. He, E. Hajiyev, Z. Ren, B. Song, and G. Jo, Recent pro- gresses of ultracold two-electron atoms, J. Phys. B 52, 102001 (2019).
- N. Goldman, G. Jūzeliunas, P. Öhberg, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77, 126401 (2014).
- R. Zhang, Y. Cheng, P. Zhang, and H. Zhai, Controlling the interaction of ultracold alkaline-earth atoms, Nat. Rev. Phys. 2, 213 (2020).
- S.-L. Zhang and Q. Zhou, Manipulating novel quantum phe- nomena using synthetic gauge fields, J. Phys. B 50, 222001 (2017).
- M. L. Wall, A. P. Koller, S. Li, X. Zhang, N. R. Cooper, J. Ye, and A. M. Rey, Synthetic Spin-Orbit Coupling in an Optical Lattice Clock, Phys. Rev. Lett. 116, 035301 (2016).
- S. Kolkowitz, S. L. Bromley, T. Bothwell, M. L. Wall, G. E. Marti, A. P. Koller, X. Zhang, A. M. Rey, and J. Ye, Spin-orbit coupled fermions in an optical lattice clock, Nature (London) 542, 66 (2017).
- L. F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M. Frittelli, F. Levi, D. Calonico, J. Catani, M. Inguscio, and L. Fallani, Synthetic Dimensions and Spin-Orbit Coupling with an Optical Clock Transition, Phys. Rev. Lett. 117, 220401 (2016).
- L. Riegger, N. Darkwah Oppong, M. Höfer, D. R. Fernandes, I. Bloch, and S. Fölling, Localized Magnetic Moments with Tunable Spin Exchange in a Gas of Ultracold Fermions, Phys. Rev. Lett. 120, 143601 (2018).
- F. Scazza, C. Hofrichter, M. Höfer, P. C. D. Groot, I. Bloch, and S. Fölling, Observation of two-orbital spin-exchange interac- tions with ultracold SU(n)-symmetric fermions, Nat. Phys. 10, 779 (2014).
- M. Wilde, Quantum Information Theory (Cambridge Univer- sity, Cambridge, England, 2017).
- M. A. Neilsen and I. L. Cheung, Quantum Computation and Quantum Information (Cambridge University, Cambridge, Eng- land, 2012).
- C. Navarrete-Benlloch, An Introduction to the Formalism of Quantum Information with Continuous Variables (Morgan & Claypool, New York, 2015).
- A. M. Turner, F. Pollmann, and E. Berg, Topological phases of one-dimensional fermions: An entanglement point of view, Phys. Rev. B 83, 075102 (2011).
- H. Nakamura, Nonadiabatic Transition: Concepts, Basic Theo- ries, and Applications (World Scientific, Singapore, 2012).
- F. A. An, E. J. Meier, and B. Gadway, Direct observation of chiral currents and magnetic reflection in atomic flux lattices, Sci. Adv. 3, e1602685 (2017).
- D. Okunoa, Y. Amano, K. Enomoto, N. Takei1, and Y. Takahashi, Schemes for nondestructive quantum gas mi- croscopy of single atoms in an optical lattice, New J. Phys. 22, 013041 (2020).
- Y. Takata, S. Nakajima, J. Kobayashi, K. Ono, Y. Amano, and Y. Takahashi, Current-feedback-stabilized laser system for quantum simulation experiments using Yb clock transition at 578 nm, Rev. Sci. Instrum. 90, 083002 (2019).