Observability of a sharp Majorana transition in a few-body model (original) (raw)

Abstract

We propose experimentally observable signatures of topological Majorana quasiparticles in the few-body limit of the interacting cold-atom model of Iemini et al.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (42)

  1. N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological bands for ultracold atoms, Rev. Mod. Phys. 91, 015005 (2019).
  2. F. Schäfer, T. Fukuhara, S. Sugawa, Y. Takasu, and Y. Takahashi, Tools for quantum simulation with ultracold atoms in optical lattices, Nat. Rev. Phys. 2, 411 (2020).
  3. More specifically, these are the strong zero modes described in [4] and studied in [5-7] to name just a few references.
  4. P. Fendley, Strong zero modes and eigenstate phase transi- tions in the XYZ/interacting Majorana chain, J. Phys. A: Math. Theor. 49, 30LT01 (2016).
  5. I. A. Maceira and F. Mila, Infinite coherence time of edge spins in finite-length chains, Phys. Rev. B 97, 064424 (2018).
  6. J. Kemp, N. Y. Yao, C. R. Laumann, and P. Fendley, Long coherence times for edge spins, J. Stat. Mech.: Theory Exp. (2017) 063105.
  7. C. Monthus, Even and odd normalized zero modes in random interacting Majorana models respecting the parity P and the time-reversal-symmetry T, J. Phys. A: Math. Theor. 51, 265303 (2018).
  8. A. Y. Kitaev, Unpaired Majorana fermions in quantum wires, Phys.-Usp. 44, 131 (2001).
  9. F. Iemini, L. Mazza, L. Fallani, P. Zoller, R. Fazio, and M. Dalmonte, Majorana Quasiparticle Protected by Z 2 Angular Momentum Conservation, Phys. Rev. Lett. 118, 200404 (2017).
  10. X. Zhou, J.-S. Pan, Z.-X. Liu, W. Zhang, W. Yi, G. Chen, and S. Jia, Symmetry-Protected Topological States for Interacting Fermions in Alkaline-Earth-Like Atoms, Phys. Rev. Lett. 119, 185701 (2017).
  11. F. Iemini, L. Mazza, D. Rossini, R. Fazio, and S. Diehl, Local- ized Majorana-Like Modes in a Number-Conserving Setting: An Exactly Solvable Model, Phys. Rev. Lett. 115, 156402 (2015).
  12. N. Lang and H. P. Büchler, Topological states in a microscopic model of interacting fermions, Phys. Rev. B 92, 041118(R) (2015).
  13. K. Guther, N. Lang, and H. P. Büchler, Ising anyonic topologi- cal phase of interacting fermions in one dimensions, Phys. Rev. B 96, 121109(R) (2017).
  14. C. V. Kraus, M. Dalmonte, M. A. Baranov, A. M. Läuchli, and P. Zoller, Majorana Edge States in Atomic Wires Coupled by Pair Hopping, Phys. Rev. Lett. 111, 173004 (2013).
  15. L. Jiang, T. Kitagawa, J. Alicea, A. R. Akhmerov, D. Pekker, G. Refael, J. I. Cirac, E. Demler, M. D. Lukin, and P. Zoller, Majo- rana Fermions in Equilibrium and Driven Cold Atom Quantum Wires, Phys. Rev. Lett. 106, 220402 (2011).
  16. M. Cheng and H.-H. Tu, Majorana edge states in interact- ing two-chain ladders of fermions, Phys. Rev. B 84, 094503 (2011).
  17. L. Fidkowski, R. M. Lutchyn, C. Nayak, and M. P. A. Fisher, Majorana zero modes in one-dimensional quantum wires with- out long-ranged superconducting order, Phys. Rev. B 84, 195436 (2011).
  18. G. Ortiz, J. Dukelsky, E. Cobanera, C. Esebbag, and C. Beenakker, Many-Body Characterization of Particle- Conserving Topological Superfluids, Phys. Rev. Lett. 113, 267002 (2014).
  19. R.-X. Zhang and C.-X. Liu, Crystalline Symmetry-Protected Majorana Mode in Number-Conserving Dirac Semimetal Nanowires, Phys. Rev. Lett. 120, 156802 (2018).
  20. J. D. Sau, B. I. Halperin, K. Flensberg, and S. Das Sarma, Num- ber conserving theory for topologically protected degeneracy in one-dimensional fermions, Phys. Rev. B 84, 144509 (2011).
  21. J. Ruhman, E. Berg, and E. Altman, Topological States in a One-Dimensional Fermi Gas with Attractive Interaction, Phys. Rev. Lett. 114, 100401 (2015).
  22. J. Ruhman and E. Altman, Topological degeneracy and pairing in a one-dimensional gas of spinless fermions, Phys. Rev. B 96, 085133 (2017).
  23. P. Zhang and F. Nori, Majorana bound states in a disordered quantum dot chain, New J. Phys. 18, 043033 (2016).
  24. G. Ortiz and E. Cobanera, What is a particle-conserving topological superfluid? The fate of Majorana modes beyond mean-field theory, Ann. Phys. (NY) 372, 357 (2016).
  25. L. Fidkowski and A. Kitaev, Effects of interactions of the topo- logical classification of free fermion systems, Phys. Rev. B 81, 134509 (2010).
  26. C. He, E. Hajiyev, Z. Ren, B. Song, and G. Jo, Recent pro- gresses of ultracold two-electron atoms, J. Phys. B 52, 102001 (2019).
  27. N. Goldman, G. Jūzeliunas, P. Öhberg, and I. B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77, 126401 (2014).
  28. R. Zhang, Y. Cheng, P. Zhang, and H. Zhai, Controlling the interaction of ultracold alkaline-earth atoms, Nat. Rev. Phys. 2, 213 (2020).
  29. S.-L. Zhang and Q. Zhou, Manipulating novel quantum phe- nomena using synthetic gauge fields, J. Phys. B 50, 222001 (2017).
  30. M. L. Wall, A. P. Koller, S. Li, X. Zhang, N. R. Cooper, J. Ye, and A. M. Rey, Synthetic Spin-Orbit Coupling in an Optical Lattice Clock, Phys. Rev. Lett. 116, 035301 (2016).
  31. S. Kolkowitz, S. L. Bromley, T. Bothwell, M. L. Wall, G. E. Marti, A. P. Koller, X. Zhang, A. M. Rey, and J. Ye, Spin-orbit coupled fermions in an optical lattice clock, Nature (London) 542, 66 (2017).
  32. L. F. Livi, G. Cappellini, M. Diem, L. Franchi, C. Clivati, M. Frittelli, F. Levi, D. Calonico, J. Catani, M. Inguscio, and L. Fallani, Synthetic Dimensions and Spin-Orbit Coupling with an Optical Clock Transition, Phys. Rev. Lett. 117, 220401 (2016).
  33. L. Riegger, N. Darkwah Oppong, M. Höfer, D. R. Fernandes, I. Bloch, and S. Fölling, Localized Magnetic Moments with Tunable Spin Exchange in a Gas of Ultracold Fermions, Phys. Rev. Lett. 120, 143601 (2018).
  34. F. Scazza, C. Hofrichter, M. Höfer, P. C. D. Groot, I. Bloch, and S. Fölling, Observation of two-orbital spin-exchange interac- tions with ultracold SU(n)-symmetric fermions, Nat. Phys. 10, 779 (2014).
  35. M. Wilde, Quantum Information Theory (Cambridge Univer- sity, Cambridge, England, 2017).
  36. M. A. Neilsen and I. L. Cheung, Quantum Computation and Quantum Information (Cambridge University, Cambridge, Eng- land, 2012).
  37. C. Navarrete-Benlloch, An Introduction to the Formalism of Quantum Information with Continuous Variables (Morgan & Claypool, New York, 2015).
  38. A. M. Turner, F. Pollmann, and E. Berg, Topological phases of one-dimensional fermions: An entanglement point of view, Phys. Rev. B 83, 075102 (2011).
  39. H. Nakamura, Nonadiabatic Transition: Concepts, Basic Theo- ries, and Applications (World Scientific, Singapore, 2012).
  40. F. A. An, E. J. Meier, and B. Gadway, Direct observation of chiral currents and magnetic reflection in atomic flux lattices, Sci. Adv. 3, e1602685 (2017).
  41. D. Okunoa, Y. Amano, K. Enomoto, N. Takei1, and Y. Takahashi, Schemes for nondestructive quantum gas mi- croscopy of single atoms in an optical lattice, New J. Phys. 22, 013041 (2020).
  42. Y. Takata, S. Nakajima, J. Kobayashi, K. Ono, Y. Amano, and Y. Takahashi, Current-feedback-stabilized laser system for quantum simulation experiments using Yb clock transition at 578 nm, Rev. Sci. Instrum. 90, 083002 (2019).