Neonatal Shoulder Width Suggests a Semirotational, Oblique Birth Mechanism in Australopithecus afarensis (original) (raw)
Related papers
Proceedings of the National …, 2009
Childbirth is complicated in humans relative to other primates. Unlike the situation in great apes, human neonates are about the same size as the birth canal, making passage difficult. The birth mechanism (the series of rotations that the neonate must undergo to successfully negotiate its mother's birth canal) distinguishes humans not only from great apes, but also from lesser apes and monkeys. Tracing the evolution of human childbirth is difficult, because the pelvic skeleton, which forms the margins of the birth canal, tends to survive poorly in the fossil record. Only 3 female individuals preserve fairly complete birth canals, and they all date to earlier phases of human evolution. Here we present a virtual reconstruction of a female Neandertal pelvis from Tabun, Israel. The size of Tabun's reconstructed birth canal indicates that childbirth was about as difficult in Neandertals as in present-day humans, but the canal's shape indicates that Neandertals had a more primitive birth mechanism. A significant shift in childbirth apparently occurred quite late in human evolution, during the last few hundred thousand years. Such a late shift underscores the uniqueness of human childbirth and the divergent evolutionary trajectories of Neandertals and the lineage leading to present-day humans.
Neandertal birth canal shape and the evolution of human childbirth
Childbirth is complicated in humans relative to other primates. Unlike the situation in great apes, human neonates are about the same size as the birth canal, making passage difficult. The birth mechanism (the series of rotations that the neonate must undergo to successfully negotiate its mother's birth canal) distinguishes humans not only from great apes, but also from lesser apes and monkeys. Tracing the evolution of human childbirth is difficult, because the pelvic skeleton, which forms the margins of the birth canal, tends to survive poorly in the fossil record. Only 3 female individuals preserve fairly complete birth canals, and they all date to earlier phases of human evolution. Here we present a virtual reconstruction of a female Neandertal pelvis from Tabun, Israel. The size of Tabun's reconstructed birth canal indicates that childbirth was about as difficult in Neandertals as in present-day humans, but the canal's shape indicates that Neandertals had a more primitive birth mechanism. A significant shift in childbirth apparently occurred quite late in human evolution, during the last few hundred thousand years. Such a late shift underscores the uniqueness of human childbirth and the divergent evolutionary trajectories of Neandertals and the lineage leading to present-day humans.
Primate pelvic anatomy and implications for birth
Philosophical transactions of the Royal Society of London. Series B, Biological sciences, 2015
The pelvis performs two major functions for terrestrial mammals. It provides somewhat rigid support for muscles engaged in locomotion and, for females, it serves as the birth canal. The result for many species, and especially for encephalized primates, is an 'obstetric dilemma' whereby the neonate often has to negotiate a tight squeeze in order to be born. On top of what was probably a baseline of challenging birth, locomotor changes in the evolution of bipedalism in the human lineage resulted in an even more complex birth process. Negotiation of the bipedal pelvis requires a series of rotations, the end of which has the infant emerging from the birth canal facing the opposite direction from the mother. This pattern, strikingly different from what is typically seen in monkeys and apes, places a premium on having assistance at delivery. Recently reported observations of births in monkeys and apes are used to compare the process in human and non-human primates, highlighting si...
Fetal load and the evolution of lumbar lordosis in bipedal hominins
Nature, 2007
As predicted by Darwin, bipedal posture and locomotion are key distinguishing features of the earliest known hominins. Hominin axial skeletons show many derived adaptations for bipedalism, including an elongated lumbar region, both in the number of vertebrae and their lengths, as well as a marked posterior concavity of wedged lumbar vertebrae, known as a lordosis. The lordosis stabilizes the upper body over the lower limbs in bipeds by positioning the trunk's centre of mass (COM) above the hips. However, bipedalism poses a unique challenge to pregnant females because the changing body shape and the extra mass associated with pregnancy shift the trunk's COM anterior to the hips. Here we show that human females have evolved a derived curvature and reinforcement of the lumbar vertebrae to compensate for this bipedal obstetric load. Similarly dimorphic morphologies in fossil vertebrae of Australopithecus suggest that this adaptation to fetal load preceded the evolution of Homo.
First steps of bipedality in hominids: evidence from the atelid and proconsulid pelvis
PeerJ, 2016
Upright walking absent a bent-hip-bent-knee gait requires lumbar lordosis, a ubiquitous feature in all hominids for which it can be observed. Its first appearance is therefore a central problem in human evolution. Atelids, which use the tail during suspension, exhibit demonstrable lordosis and can achieve full extension of their hind limbs during terrestrial upright stance. Although obviously homoplastic with hominids, the pelvic mechanisms facilitating lordosis appear largely similar in both taxa with respect to abbreviation of upper iliac height coupled with broad sacral alae. Both provide spatial separation of the most caudal lumbar(s) from the iliac blades. A broad sacrum is therefore a likely facet of earliest hominid bipedality. All tailed monkeys have broad alae. By contrast all extant apes have very narrow sacra, which promote “trapping” of their most caudal lumbars to achieve lower trunk rigidity during suspension. The alae in the tailless proconsulEkembo nyanzaeappear to h...
First steps of bipedality in hominids: evidence from the pelvis of Proconsul and atelids
2016
Upright walking absent a bent-hip-bent-knee gait requires lumbar lordosis, a ubiquitous feature in all hominids for which it can be observed. Its first appearance is therefore a central problem in human evolution. Atelids, which use the tail during suspension, exhibit demonstrable lordosis and can achieve full extension of their hind limbs during terrestrial upright stance. Although obviously homoplastic with hominids, the pelvic mechanisms facilitating lordosis appear largely similar in both taxa with respect to abbreviation of upper iliac height coupled with broad sacral alae. Both provide spatial separation of the most caudal lumbar(s) from the iliac blades. A broad sacrum is therefore a likely facet of earliest hominid bipedality. All tailed monkeys have broad alae. By contrast all extant apes have very narrow sacra, which promote ''trapping'' of their most caudal lumbars to achieve lower trunk rigidity during suspension. The alae in the tailless proconsul Ekembo nyanzae appear to have been quite broad, a character state that may have been primitive in Miocene hominoids not yet adapted to suspension and, by extension, exaptive for earliest bipedality in the hominid/panid last common ancestor. This hypothesis receives strong support from other anatomical systems preserved in Ardipithecus ramidus.
Human ischia contrast with those of great apes in being craniocaudally short and dorsally projecting. This configuration is thought to facilitate greater hip extension in humans during bipedal locomotion. This link has been used to infer kinematics in early hominins, but the consequences of variation in ischial configuration for gait remain uncertain. Kinematic data for a limited sample of extant nonhuman primates demonstrate that there is variation in hip extension in these taxa during bipedal behaviors—specif-ically, Hylobates and Ateles are capable of greater extension than Pan and Macaca. In this study, we tested the hypothesis that ischial length and orientation are functionally linked with hip extension during bipedalism among these taxa. As expected, humans have the shortest ischia, followed by gibbons, spider monkeys, chimpanzees, and macaques. Our predictions for ischial orientation are not supported, however: macaques, gibbons, and spider monkeys do not vary in this trait, and they have ischia that are less dorsally angled than that of the chimpanzee. The results for ischium length provide limited support for the idea that the early hominin Ardipithecus ramidus, with its long, caudally oriented ischium was not capable of humanlike extended-hip bipedalism, and that the ischial shortening observed in post-Ardipithecus hominins reflects a shift toward a more humanlike gait. In contrast, while our results do not necessarily refute a link between ischial orientation and hip extension in hominins, they do not provide comparative support, making changes in ischial orientation in this part of the fossil record more difficult to interpret. Anat Rec, 300:845–858, 2017. V C 2017 Wiley Periodicals, Inc.
Earliest axial fossils from the genus Australopithecus
Journal of Human Evolution, 2019
Australopitheus anamensis fossils demonstrate that craniodentally and postcranially the taxon was more primitive than its evolutionary successor Australopithecus afarensis. Postcranial evidence suggests habitual bipedality combined with primitive upper limbs and an inferred significant arboreal adaptation. Here we report on A. anamensis fossils from the Assa Issie locality in Ethiopia's Middle Awash area dated to ~4.2 Ma, constituting the oldest known Australopithecus axial remains. Because the spine is the interface between major body segments, these fossils can be informative on the adaptation, behavior and our evolutionary understanding of A. anamensis. The atlas, or first cervical vertebra (C1), is similar in size to Homo sapiens, with synapomorphies in the articular facets and transverse processes. Absence of a retroglenoid tubercle suggests that, like humans, A. anamensis lacked the atlantoclavicularis muscle, resulting in reduced capacity for climbing relative to the great apes. The retroflexed C2 odontoid process and long C6 spinous process are reciprocates of facial prognathism, a long clivus and retroflexed foramen magnum, rather than indications of locomotor or postural behaviors. The T1 is derived in shape and size as in Homo with an enlarged vertebral body epiphyseal surfaces for mitigating the high-magnitude compressive loads of full-time bipedality. The full costal facet is unlike the extant great ape demifacet pattern and represents the oldest evidence for the derived univertebral pattern in hominins. These fossils augment other lines of evidence in A. anamensis indicating habitual bipedality despite some plesio-morphic vertebral traits related to craniofacial morphology independent of locomotor or postural behaviors (i.e., a long clivus and a retroflexed foramen magnum). Yet in contrast to craniodental lines of evidence, some aspects of vertebral morphology in A. anamensis appear more derived than its descendant A. afarensis.