Bupivacaine Blocks N-Type Inactivating Kv Channels in the Open State: No Allosteric Effect on Inactivation Kinetics (original) (raw)

Molecular and kinetic determinants of local anaesthetic action on sodium channels

Toxicology Letters, 1998

(1) Local anaesthetics (LA) rely for their clinical actions on state-dependent inhibition of voltage-dependent sodium channels. (2) Single, batrachoxin-modified sodium channels in planar lipid bilayers allow direct observation of drug-channel interactions. Two modes of inhibition of single-channel current are observed: fast block of the open channels and prolongation of a long-lived closed state, some of whose properties resemble those of the inactivated state of unmodified channels. (3) Analogues of different parts of the LA molecule separately mimic each blocking mode: amines-fast block, and water-soluble aromatics-closed state prolongation. (4) Interaction between a v-conotoxin derivative and diethylammonium indicate an intrapore site of fast, open-state block. (5) Site-directed mutagenesis studies suggest that hydrophobic residues in transmembrane segment 6 of repeat domain 4 of sodium channels are critical for both LA binding and stabilization of the inactivated state.

Mechanisms of use-dependent block of sodium channels in excitable membranes by local anesthetics

Biophysical Journal, 1984

Many local anesthetics promote reduction in sodium current during repetitive stimulation of excitable membranes. Use-, frequency-, and voltage-dependent responses describe patterns of peak INa when pulse width, pulse frequency, and pulse amplitude are varied. Such responses can be viewed as reflecting voltage-sensitive shifts in equilibrium between conducting, unblocked channels and nonconducting, blocked channels. The modulated-receptor hypothesis postulates shifts in equilibrium as the result of a variable-affinity receptor and modified inactivation gate kinetics in drug-complexed channels. An alternative view considers drug blocking in the absence of these two features. We propose that drug binds to a constant-affinity channel receptor where receptor access is regulated by the channel gates. Specifically, we view channel binding sites as guarded by the channel gate conformation, so that unlike receptors where ligands have continuous access, blocking agent access is variable during the course of an action potential. During the course of an action potential, the m and h gates change conformation in response to transmembrane potential. Conducting channels with both gates open leave the binding site unguarded and thus accessible to drug, whereas nonconducting channels, with gates in the closed conformation, act to restrict drug access to unbound receptors and possibly to trap drug in drug-complexed channels. We develop analytical expressions characterizing guarded receptors as "apparently" variable-affinity binding sites and predicting shifts in "apparent" channel inactivation in the hyperpolarizing direction. These results were confirmed with computer simulations. Furthermore, these results are in quantitative agreement with recent investigations of lidocaine binding in cardiac sodium channels.

Stereoselective Interactions between Local Anesthetics and Ion Channels

Chirality, 2012

Local anesthetics are useful probes of ion channel function and structure. Stereoselective interactions are especially interesting because they can reveal three-dimensional relationships between drugs and channels with otherwise identical biophysical and physicochemical properties. Furthermore, stereoselectivity suggests direct and specific receptor-mediated action, and identification of such stereospecific interactions may have important clinical consequences. The fact that drug targets are able to discriminate between the enantiomers present in a racemic drug is the consequence of the ordered asymmetric macromolecular units that form living cells. However, almost 25% of the drugs used in the clinical practice are racemic mixtures, and their individual enantiomers frequently differ in both their pharmacodynamic and pharmacokinetic profiles. Moreover, their effects can be similar to or different from the pharmacological effect of the drug and may contribute to the undesired effects of the drug. In other cases, the pharmacological effects induced by the two enantiomers on the molecular target are opposite. In the present manuscript, we will review the stereoselective effects of bupivacaine-like local anesthetics on cardiac sodium and potassium channels. Chirality 00:000-000, 2012.

Block of Inactivation-deficient Na+ Channels by Local Anesthetics in Stably Transfected Mammalian Cells: Evidence for Drug Binding Along the Activation Pathway

The Journal of General Physiology, 2004

According to the classic modulated receptor hypothesis, local anesthetics (LAs) such as benzocaine and lidocaine bind preferentially to fast-inactivated Na+channels with higher affinities. However, an alternative view suggests that activation of Na+channels plays a crucial role in promoting high-affinity LA binding and that fast inactivation per se is not a prerequisite for LA preferential binding. We investigated the role of activation in LA action in inactivation-deficient rat muscle Na+channels (rNav1.4-L435W/L437C/A438W) expressed in stably transfected Hek293 cells. The 50% inhibitory concentrations (IC50) for the open-channel block at +30 mV by lidocaine and benzocaine were 20.9 ± 3.3 μM (n= 5) and 81.7 ± 10.6 μM (n= 5), respectively; both were comparable to inactivated-channel affinities. In comparison, IC50values for resting-channel block at −140 mV were >12-fold higher than those for open-channel block. With 300 μM benzocaine, rapid time-dependent block (τ ≈ 0.8 ms) of in...

Involvement of local anesthetic binding sites on IVS6 of sodium channels in fast and slow inactivation

Neuroscience Letters, 2003

Local anesthetics (LAs) block Na 1 channels with a higher affinity for the fast or slow inactivated state of the channel. Their binding to the channel may stabilize fast inactivation or induce slow inactivation. We examined the role of the LA binding sites on domain IV, S6 (IVS6) of Na 1 channels in fast and slow inactivation by studying the gating properties of the mutants on IVS6 affecting LA binding. Mutation of the putative LA binding site, F1579C, inhibited fast and slow inactivation. Mutations of another putative LA binding site, Y1586C, and IVS6 residue involved in LA access and binding, I1575C, both enhanced fast and slow inactivation. None of the mutations affected channel activation. These results suggest that the LA binding site on IVS6 is involved in slow inactivation as well as fast inactivation, and these two gatings are coupled at the binding site.

Local Anesthetic Neurotoxicity Does Not Result from Blockade of Voltage-Gated Sodium Channels

Anesthesia & Analgesia, 1995

To investigate whether local anesthetic neurotoxicity results from sodium channel blockade, we compared the effects of intrathecally administered lidocaine, bupivacaine, and tetrodotoxin (TTX), the latter a highly selective sodium channel blocker, on sensory function and spinal cord morphology in a rat model. First, to determine relative anesthetic potency, 25 rats implanted with intrathecal catheters were subjected to infusions of lidocaine (n = 8), bupivacaine (n = 81, or TTX (n = 9). The three drugs produced parallel dose-effect curves that differed significantly from one another: the EC,, values for lidocaine, bupivacaine, and TTX were 28.2 mM (0.66%), 6.6 mM (0.19%), and 462 nM, respectively. Twenty-five additional rats were then given intrathecal lidocaine (n = 8), bupivacaine (n = 8), or TTX (n = 9) at concentrations 10 times the calculated EC,, for sensory block. Lidocaine and bupivacaine induced persistent sensory impairment, whereas TTX did not. Finally, 28 rats were given either intrathecal bupivacaine (n = 10) or TTX (n = 9) at 10 times the EC,,, or normal saline (n = 9). Significant sensory impairment again occurred after infusion of bupivacaine, but not after infusion of TTX or saline. Neuropathologic evaluation revealed moderate to severe nerve root injury in bupivacaine-treated animals; histologic changes in TTX-and saline-treated animals were minimal, similar, and restricted to the area adjacent to the catheter. These results indicate that local anesthetic neurotoxicity does not result from blockade of the sodium channel, and suggest that development of a safer anesthetic is a realistic goal.

An improved model for the binding of lidocaine and structurally related local anaesthetics to fast-inactivated voltage-operated sodium channels, showing evidence of cooperativity

British Journal of Pharmacology, 2004

1 The interaction of lidocaine-like local anaesthetics with voltage-operated sodium channels is traditionally assumed to be characterized by tighter binding of the drugs to depolarized channels. As inactivated and drug-bound channels are both unavailable on depolarization, an indirect approach is required to yield estimates for the dissociation constants from channels in inactivated states. The established model, originally described by Bean et al., describes the difference in affinity between resting and inactivated states in terms of the concentration dependence of the voltage shift in the availability curve. We have tested the hypothesis that this model, which assumes a simple Langmuir relationship, could be improved by introducing a Hill-type exponent, which would take into account potential sources of cooperativity.

Interaction of local anesthetics with a peptide encompassing the IV/S4–S5 linker of the Na+ channel

Biophysical Chemistry, 2006

The peptide pIV/S4-S5 encompasses the cytoplasmic linker between helices S4-S5 in domain IV of the voltage-gated Na + channel, residues 1644-1664. 2 The interaction of two local anesthetics (LA), lidocaine and benzocaine, with pIV/S4-S5 has been studied by DOSY, heteronuclear NMR 1 H-15 N-HSQC spectroscopy and computational methods. DOSY indicates that benzocaine, a neutral ester, exhibits stronger interaction with pIV/S4-S5 than lidocaine, a charged amine-amide. Weighted average chemical shifts, Δδ( 1 H-15 N), show that benzocaine affects residues L 1653 , M 1655 and S 1656 while lidocaine slightly perturbs residues I 1646 , L 1649 and A 1659 , L 1660 , near the N-and C-terminus, respectively. Computational methods confirmed the stability of the benzocaine binding and the existence of two binding sites for lidocaine. Even considering that the approach of studying the peptide in the presence of a co-solvent (TFE/H 2 O, 30%/70% v/v) has an inherently limited implication, our data strongly support the existence of multiple LA binding sites in the IV/S4-S5 linker, as suggested in the literature. In addition, we consider that LA can bind to the S4-S5 linker with diverse binding modes and strength since this linker is part of the receptor for the "inactivation gate particle". Conditions for devising new functional studies, aiming to better understand Na + channel functionality as well as the various facets of LA pharmacological activity are proposed in this work. (permanent address).