Bupivacaine Blocks N-Type Inactivating Kv Channels in the Open State: No Allosteric Effect on Inactivation Kinetics (original) (raw)

Abstract

Local anesthetics bind to ion channels in a state-dependent manner. For noninactivating voltage-gated K channels the binding mainly occurs in the open state, while for voltage-gated inactivating Na channels it is assumed to occur mainly in inactivated states, leading to an allosterically caused increase in the inactivation probability, reflected in a negative shift of the steady-state inactivation curve, prolonged recovery from inactivation, and a frequency-dependent block. How local anesthetics bind to N-type inactivating K channels is less explored. In this study, we have compared bupivacaine effects on inactivating (Shaker and K v 3.4) and noninactivating (Shaker-IR and K v 3.2) channels, expressed in Xenopus oocytes. Bupivacaine was found to block these channels time-dependently without shifting the steady-state inactivation curve markedly, without a prolonged recovery from inactivation, and without a frequency-dependent block. An analysis, including computational testing of kinetic models, suggests binding to the channel mainly in the open state, with affinities close to those estimated for corresponding noninactivating channels (300 and 280 mM for Shaker and Shaker-IR, and 60 and 90 mM for K v 3.4 and K v 3.2). The similar magnitudes of K d , as well as of blocking and unblocking rate constants for inactivating and noninactivating Shaker channels, most likely exclude allosteric interactions between the inactivation mechanism and the binding site. The relevance of these results for understanding the action of local anesthetics on Na channels is discussed.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (50)

  1. Hille, B. 1977. Local anesthetics: hydrophilic and hydrophobic path- ways for the drug-receptor reaction. J. Gen. Physiol. 69:497-575.
  2. Hondeghem, L. M., and B. G. Katzung. 1977. Time-and voltage- dependent interactions of antiarrhythmic drugs with cardiac sodium channels. Biochim. Biophys. Acta. 472:373-398.
  3. Cahalan, M. D. 1978. Local anesthetic block of sodium channels in normal and pronase-treated squid giant axons. Biophys. J. 23:285-311.
  4. Yeh, J. Z. 1978. Sodium inactivation mechanism modulates QX-314 block of sodium channels in squid axons. Biophys. J. 24:569-574.
  5. Bean, B. P., C. J. Cohen, and R. W. Tsien. 1983. Lidocaine block of cardiac sodium channels. J. Gen. Physiol. 81:613-642.
  6. Starmer, C. F., A. O. Grant, and H. C. Strauss. 1984. Mechanisms of use-dependent block of sodium channels in excitable membranes by local anesthetics. Biophys. J. 46:15-27.
  7. Chernoff, D. M. 1990. Kinetic analysis of phasic inhibition of neuronal sodium currents by lidocaine and bupivacaine. Biophys. J. 58:53-68.
  8. O'Leary, M. E., and M. Chahine. 2002. Cocaine binds to a common site on open and inactivated human heart (Na v 1.5) sodium channels. J. Physiol. 541:701-716.
  9. Ragsdale, D. S., J. C. McPhee, T. Scheuer, and W. A. Catterall. 1994. Molecular determinants of state-dependent block of Na 1 channels by local anesthetics. Science. 265:1724-1728.
  10. Nilsson, J., F. Elinder, and P. A ˚rhem. 1998. Mechanisms of bupiva- caine action on Na 1 and K 1 channels in myelinated axons of Xenopus laevis. Eur. J. Pharmacol. 360:21-29.
  11. O'Leary, M. E., R. G. Kallen, and R. Horn. 1994. Evidence for a direct interaction between internal tetra-alkylammonium cations and the inac- tivation gate of cardiac sodium channels. J. Gen. Physiol. 104:523-539.
  12. Grant, A. O., R. Chandra, C. Keller, M. Carboni, and C. F. Starmer. 2000. Block of wild-type and inactivation-deficient cardiac sodium channels IFM/QQQ stably expressed in mammalian cells. Biophys. J. 79:3019-3035.
  13. Takahashi, M. P., and S. C. Cannon. 2001. Mexiletine block of disease- associated mutations in S6 segments of the human skeletal muscle Na 1 channel. J. Physiol. 537:701-714.
  14. Yang, Y. C., and C. C. Kuo. 2002. Inhibition of Na 1 current by imipramine and related compounds: different binding kinetics as an inactivation stabilizer and as an open channel blocker. Mol. Pharmacol. 62:1228-1237.
  15. Wang, G. K., D. C. Brodwick, and G. R. Strichartz. 1987. Inhibition of sodium currents by local anesthetics in chloramine-T-treated squid axons: the role of activation. J. Gen. Physiol. 89:645-667.
  16. Wang, G. K., C. Russell, and S. Y. Wang. 2003. Mexiletine block of wild-type and inactivation-deficient human skeletal muscle HNa v 1.4 Na 1 channels. J. Physiol. 554:621-633.
  17. Wang, S. Y., J. Mitchell, E. Moczydlowski, and G. K. Wang. 2004. Block of inactivation-deficient Na 1 channels by local anesthetics in stably transfected mammalian cells: evidence for drug binding along the activation pathway. J. Gen. Physiol. 124:691-701.
  18. Wang, G. K., J. Calderon, and S. Y. Wang. 2007. State-and use- dependent block of muscle Na v 1.4 and neuronal Na v 1.7. Voltage-gated Na 1 channel isoforms by ranolazine. Mol. Pharmacol. 73:940-948.
  19. Vedantham, V., and S. C. Cannon. 1999. The position of the fast- inactivation gate during lidocaine block of voltage-gated Na 1 channels. J. Gen. Physiol. 113:7-16.
  20. Scheuer, T. 1999. Commentary: A revised view of local anesthetic action: what channel state is really stabilized? J. Gen. Physiol. 113:3-6.
  21. Doyle, D. A., J. M. Cabral, R. A. Pfuetzner, A. Kuo, J. M. Gulbis, S. L. Cohen, B. T. Chait, and R. MacKinnon. 1998. The structure of the potassium channel: molecular basis of K 1 conduction and selectivity. Science. 280:69-77.
  22. Elinder, F., P. Arhem, and H. P. Larsson. 2001. Localization of the extracellular end of the voltage sensor S4 in a potassium channel. Biophys. J. 80:1802-1809.
  23. Zhou, M., J. H. Morais-Cabral, S. Mann, and R. MacKinnon. 2001. Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature. 411:657-661.
  24. Jiang, Y., A. Lee, J. Chen, M. Cadene, B. T. Chait, and R. MacKinnon. 2002. The open pore conformation of potassium channels. Nature. 417:523-526.
  25. Luzhkov, V., J. Nilsson, P. A ˚rhem, and J. A ˚qvist. 2003. Computational modeling of the open-state K v 1.5 ion channel block by bupivacaine. Biochim. Biophys. Acta. 1652:35-51.
  26. Visan, V., Z. Fajloun, J. M. Sabatier, and S. Grissmer. 2004. Mapping of maurotoxin binding sites on h K v 1.2, h K v 1.3, and h IKCa1 channels. Mol. Pharmacol. 66:1103-1112.
  27. Long, S. B., E. B. Campbell, and R. Mackinnon. 2005. Crystal structure of a mammalian voltage-dependent Shaker family K 1 chan- nel. Science. 309:897-903.
  28. Arias, C., M. Guizy, M. David, S. Marzian, T. Gonza ´lez, N. Decher, and C. Valenzuela. 2007. K v b1.3 reduces the degree of stereoselective bupivacaine block of K v 1.5 channels. Anesthesiology. 107:641-651.
  29. Zagotta, W. N., T. Hoshi, and R. W. Aldrich. 1990. Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB. Science. 250:568-571.
  30. Stephens, G. J., D. G. Owen, A. Opalko, M. R. Pisano, W. H. MacGregor, and B. Robertson. 1996. Studies on the blocking action of human K v 3.4 inactivation peptide variants in the mouse cloned K v 1.1 K 1 channel. J. Physiol. 496:145-154.
  31. Gonzalez, T., M. Longobardo, R. Caballero, E. Delpon, J. Tamargo, and C. C. Valenzuela. 2001. Effects of bupivacaine and a novel local anesthetic, IQB-9302, on human cardiac K 1 channels. J. Pharmacol. Exp. Ther. 296:573-583.
  32. Nilsson, J., M. Madeja, and P. A ˚rhem. 2003. Local anesthetic block of K v channels: role of the S6 helix and the S5-S6 linker for bupivacaine action. Mol. Pharmacol. 63:1417-1429.
  33. Stu ¨hmer, W., M. Stocker, B. Sakman, P. Seeburg, A. Baumann, A. Gruppe, and O. Pongs. 1988. Potassium channels expressed from rat brain cDNA have delayed rectifier properties. FEBS Lett. 242: 199-206.
  34. Kamb, A., L. E. Iverson, and M. A. Tanouye. 1987. Molecular characterization of Shaker, a Drosophila gene that encodes a potassium channel. Cell. 50:405-413.
  35. Tempel, B. L., D. M. Papazian, T. L. Schwarz, Y. N. Jan, and L. Y. Jan. 1987. Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science. 237:770-775.
  36. Madeja, M., U. Musshoff, and E. J. Speckmann. 1991. A concentra- tion-clamp system allowing two-electrode voltage-clamp investigations in oocytes of Xenopus laevis. J. Neurosci. Methods. 38:267-269.
  37. Finkel, A. S., and P. W. Gage. 1985. Conventional voltage clamping with two intracellular microelectrodes. In Voltage and Patch Clamping with Microelectrodes. T. G. Smith, H. Lecar, S. R. Redman, and P. W. Gage, editors. Williams & Wilkins, Baltimore, MD.
  38. Zagotta, W. N., T. Hoshi, and R. W. Aldrich. 1994. Shaker potassium channel gating. III: Evaluation of kinetic models for activation. J. Gen. Physiol. 103:321-362.
  39. Elinder, F., Y. Liu, and P. A ˚rhem. 1998. Divalent cation effects on the Shaker K channel suggest a pentapeptide sequence as determinant of functional surface charge density. J. Membr. Biol. 165:183-189.
  40. Armstrong, C. M., and A. Loboda. 2001. A model for 4-aminopyridine action on K channels: similarities to tetraethylammonium ion action. Biophys. J. 81:895-904.
  41. Elinder, F., and P. A ˚rhem. 1991. Mechanisms of the tetrahydroami- noacridine effect on action potential and ion currents in myelinated axons. Eur. J. Pharmacol. 208:1-8.
  42. Hille, B. 2001. Ionic Channels of Excitable Membranes, 3rd Ed. Sinauer Associates, Sunderland, MA.
  43. Wheeler, D. M., E. L. Bradley, and W. T. Woods, Jr. 1988. The electrophysiologic actions of lidocaine and bupivacaine in the isolated, perfused canine heart. Anesthesiology. 68:201-212.
  44. Lipka, L. J., M. Jiang, and G. N. Tseng. 1998. Differential effects of bupivacaine on cardiac K channels: role of channel inactivation and subunit composition in drug-channel interaction. J. Cardiovasc. Elec- trophysiol. 9:727-742.
  45. Friederich, P., A. Solth, S. Schillemeit, and D. Isbrandt. 2004. Local anaesthetic sensitivities of cloned HERG channels from human heart: comparison with HERG/MiRP1 and HERG/MiRP1 T8A. Br. J. Anaesth. 92:93-101.
  46. Sanguinetti, M. C., and M. Tristani-Firouzi. 2006. hERG potassium channels and cardiac arrhythmia. Review. Nature. 440:463-469
  47. A ˚rhem, P., G. Klement, and J. Nilsson. 2003. Mechanisms of anes- thesia: towards integrating network, cellular, and molecular level modeling. Review. Neuropsychopharmacology. 28:40-47.
  48. Liu, H., M. Tateyama, C. E. Clancy, H. Abriel, and R. S. Kass. 2002. Channel openings are necessary but not sufficient for use- dependent block of cardiac Na 1 channels by flecainide: evidence from the analysis of disease-linked mutations. J. Gen. Physiol. 120:39-51.
  49. Ramos, E., and M. E. O'Leary. 2004. State-dependent trapping of flecainide in the cardiac sodium channel. J. Physiol. 560:37-49.
  50. Bennett, P. B., C. Valenzuela, L. Q. Chen, and R. G. Kallen. 1995. On the molecular nature of the lidocaine receptor of cardiac Na 1 channels. Modification of block by alterations in the a-subunit III-IV interdo- main. Circ. Res. 77:584-592.