Mantle escape inferred from seismic anisotropy in young continental (original) (raw)
Related papers
Seismic anisotropy and mantle creep in young orogens
Geophysical Journal International, 2002
Seismic anisotropy provides evidence for the physical state and tectonic evolution of the lithosphere. We discuss the origin of anisotropy at various depths, and relate it to tectonic stress, geotherms and rheology. The anisotropy of the uppermost mantle is controlled by the orthorhombic mineral olivine, and may result from ductile deformation, dynamic recrystallization or annealing. Anisotropy beneath young orogens has been measured for the seismic phase Pn that propagates in the uppermost mantle. This anisotropy is interpreted as being caused by deformation during the most recent thermotectonic event, and thus provides information on the process of mountain building. Whereas tectonic stress and many structural features in the upper crust are usually orientated perpendicular to the structural axis of mountain belts, Pn anisotropy is aligned parallel to the structural axis. We interpret this to indicate mountainparallel ductile (i.e. creeping) deformation in the uppermost mantle that is a consequence of mountain-perpendicular compressive stresses. The preferred orientation of the fast axes of some anisotropic minerals, such as olivine, is known to be in the creep direction, a consequence of the anisotropy of strength and viscosity of orientated minerals. In order to explain the anisotropy of the mantle beneath young orogens we extend the concept of crustal 'escape' (or 'extrusion') tectonics to the uppermost mantle. We present rheological model calculations to support this hypothesis. Mountain-perpendicular horizontal stress (determined in the upper crust) and mountain-parallel seismic anisotropy (in the uppermost mantle) require a zone of ductile decoupling in the middle or lower crust of young mountain belts. Examples for stress and mountain-parallel Pn anisotropy are given for Tibet, the Alpine chains, and young mountain ranges in the Americas. Finally, we suggest a simple model for initiating mountain parallel creep.
Mountain building and mantle dynamics
Tectonics, 2013
Mountain building at convergent margins requires tectonic forces that can overcome frictional resistance along large-scale thrust faults and support the gravitational potential energy stored within the thickened crust of the orogen. A general, dynamic model for this process is still lacking. Here we propose that mountain belts can be classified between two end-members. First, those of "slab pull" type, where subduction is mainly confined to the upper mantle, and rollback trench motion lead to moderately thick crustal stacks, such as in the Mediterranean. Second, those of "slab suction" type, where whole-mantle convection cells ("conveyor belts") lead to the more extreme expressions of orogeny, such as the largely thickened crust and high plateaus of present-day Tibet and the Altiplano. For the slab suction type, deep mantle convection produces the unique conditions to drag plates toward each other, irrespective of their nature and other boundary conditions. We support this hypothesis by analyzing the orogenic, volcanic, and convective history associated with the Tertiary formation of the Andes after~40 Ma and Himalayas after collision at~55 Ma. Based on mantle circulation modeling and tectonic reconstructions, we surmise that the forces necessary to sustain slab-suction mountain building in those orogens derive, after transient slab ponding, from the mantle drag induced upon slab penetration into the lower mantle, and from an associated surge of mantle upwelling beneath Africa. This process started at~65-55 Ma for Tibet-Himalaya, when the Tethyan slab penetrated into the lower mantle, and~10 Myr later in the Andes, when the Nazca slab did. This surge of mantle convection drags plates against each other, generating the necessary compressional forces to create and sustain these two orogenic belts. If our model is correct, the available geological records of orogeny can be used to decipher time-dependent mantle convection, with implications for the supercontinental cycle.
Earth and Planetary Science Letters, 1999
Forward numerical models are used to investigate the effect of deformation regime on the development of olivine lattice-preferred orientations (LPO) and associated seismic anisotropy within continental deformation zones. LPO predicted to form by pure shear, simple shear, transpression, or transtension are compared to a database comprising ca. 200 olivine LPO from naturally deformed upper mantle rocks. This comparison suggests that simple shear or plane combinations of simple and pure shear are probably the dominant deformation regimes in the upper mantle. Seismic properties, calculated using the modeled olivine LPO, suggest that seismic anisotropy data may carry information on the deformation regimes active in the lithospheric mantle, although not all deformation regimes are characterized by a distinct seismic anisotropy signal. Transtensional deformation in continental rift systems should result in fast S-wave polarization and P-wave propagation directions oblique to the rift trend within the extended lithospheric mantle. Simple shear (wrench) or transpression in vertical deformation zones and pure shear (horizontal extension) result in similar seismic anisotropy. Simple shear or widening-thinning shear may, however, induce obliquity between seismic and magnetotelluric electrical conductivity anisotropy data. Similarly, it is not possible to distinguish between simple shear or lengthening-thinning shear (plane transpression) in horizontal deformation zones (thrusts) and pure shear (vertical contraction=horizontal extension). In all cases, the polarization direction of the fast split S-wave and the fast P-wave direction parallels the flow direction, but the anisotropy for both Pn-and S-waves is lower in horizontal structures than in vertical ones. Finally, several deformations show an isotropic response to SKS and=or Pn waves, suggesting that seismic isotropy does not necessarily imply absence (or heterogeneity) of deformation. There is a good agreement between model predictions and seismic anisotropy data in both transtensional and transpressional zones, suggesting coupled deformation of the crust and mantle. Oblique fast S-wave polarization directions in the East African rift, for instance, may result from an early transtensional deformation in the mantle lithosphere below the rift system. In contrast, most thrust belts display fast S-waves polarized parallel to the trend of the belt. One possible interpretation is that the upper mantle is decoupled from the crust in these areas.
Crustal melting, ductile flow, and deformation in mountain belts: Cause and effect relationships
Lithosphere, 2013
Exhumed sections of migmatites are beautifully exposed in the middle crust of old orogens such as the Proterozoic Wet Mountains of Colorado and young Tertiary-active orogens such as the Himalaya and Karakoram. Migmatites and leucogranites occur both on a regional scale (e.g., Greater Himalayan Sequence) and along more restricted shear zones and strike-slip faults (e.g., Karakoram, Jiale, and Red River faults). Melting and deformation are clearly diachronous across orogenic belts over space and time, yet in general, deformation must precede regional metamorphism and melting in order to thicken the crust and increase pressure and temperature. Some deformation can be synchronous with partial melting and there is almost always post-melting deformation along shear zones or faults. The distinction between pre-, syn-, and post-kinematic granites in three dimensions, in pressure-temperature space, and in time becomes critical. In particular, mapping of macro-and micro-structures combined with precise U-Th-Pb dating of migmatitic leucosomes and granitic rocks in deformation zones can be used to constrain the relative timing of metamorphism, melting, ductile shearing and brittle faulting. In the Himalaya, multiple sill intrusions emanating from a regional migmatite terrane fed growth of leucogranite bodies over a time span of ~30 m.y. and channel fl ow, the southward extrusion of a partially melted section of the mid-crust, occurred along the Himalaya during the Miocene from ca. 24-15 Ma. The Karakoram batholith formed by pre-to post-collisional metamorphism, migmatisation and magmatism over a period lasting at least 65 m.y. Comparisons of the Himalaya and Karakoram migmatite-granite belts with the Proterozoic Wet Mountains in Colorado provide strong evidence for weak middle crust capable of aseismic fl ow, leading to question models of lithospheric rheology that call on strong middle crust.
Rheological heterogeneity, mechanical anisotropy and deformation of the continental lithosphere
Tectonophysics, 1998
This paper aims to present an overview on the influence of rheological heterogeneity and mechanical anisotropy on the deformation of continents. After briefly recapping the concept of rheological stratification of the lithosphere, we discuss two specific issues: (1) as supported by a growing body of geophysical and geological observations, crust=mantle mechanical coupling is usually efficient, especially beneath major transcurrent faults which probably crosscut the lithosphere and root within the sublithospheric mantle; and (2) in most geodynamic environments, mechanical properties of the mantle govern the tectonic behaviour of the lithosphere. Lateral rheological heterogeneity of the continental lithosphere may result from various sources, with variations in geothermal gradient being the principal one. The oldest domains of continents, the cratonic nuclei, are characterized by a relatively cold, thick, and consequently stiff lithosphere. On the other hand, rifting may also modify the thermal structure of the lithosphere. Depending on the relative stretching of the crust and upper mantle, a stiff or a weak heterogeneity may develop. Observations from rift domains suggest that rifting usually results in a larger thinning of the lithospheric mantle than of the crust, and therefore tends to generate a weak heterogeneity. Numerical models show that during continental collision, the presence of both stiff and weak rheological heterogeneities significantly influences the large-scale deformation of the continental lithosphere. They especially favour the development of lithospheric-scale strike-slip faults, which allow strain to be transferred between the heterogeneities. An heterogeneous strain partition occurs: cratons largely escape deformation, and strain tends to localize within or at the boundary of the rift basins provided compressional deformation starts before the thermal heterogeneity induced by rifting are compensated. Seismic and electrical conductivity anisotropies consistently point towards the existence of a coherent fabric in the lithospheric mantle beneath continental domains. Analysis of naturally deformed peridotites, experimental deformations and numerical simulations suggest that this fabric is developed during orogenic events and subsequently frozen in the lithospheric mantle. Because the mechanical properties of single-crystal olivine are anisotropic, i.e. dependent on the orientation of the applied forces relative to the dominant slip systems, a pervasive fabric frozen in the mantle may induce a significant mechanical anisotropy of the whole lithospheric mantle. It is suggested that this mechanical anisotropy is the source of the so-called tectonic inheritance, i.e. the systematic reactivation of ancient tectonic directions; it may especially explain preferential rift propagation and continental break-up along pre-existing orogenic belts. Thus, the deformation of continents during orogenic events results from a trade-off between tectonic forces applied at plate boundaries, plate geometry, and the intrinsic properties (rheological heterogeneity and mechanical anisotropy) of the continental plates.
Seismic lamination and anisotropy of the Lower Continental Crust
Tectonophysics, 2006
Seismic lamination in the lower crust associated with marked anisotropy has been observed at various locations. Three of these locations were investigated by specially designed experiments in the near vertical and in the wide-angle range, that is the Urach and the Black Forrest area, both belonging to the Moldanubian, a collapsed Variscan terrane in southern Germany, and in the Donbas Basin, a rift inside the East European (Ukrainian) craton. In these three cases, a firm relationship between lower crust seismic lamination and anisotropy is found. There are more cases of lower-crustal lamination and anisotropy, e.g. from the Basin and Range province (western US) and from central Tibet, not revealed by seismic wide-angle measurements, but by teleseismic receiver function studies with a P-S conversion at the Moho. Other cases of lamination and anisotropy are from exhumed lower crustal rocks in Calabria (southern Italy), and Val Sesia and Val Strona (Ivrea area, Northern Italy). We demonstrate that rocks in the lower continental crust, apart from differing in composition, differ from the upper mantle both in terms of seismic lamination (observed in the near-vertical range) and in the type of anisotropy. Compared to upper mantle rocks exhibiting mainly orthorhombic symmetry, the symmetry of the rocks constituting the lower crust is either axial or orthorhombic and basically a result of preferred crystallographic orientation of major minerals (biotite, muscovite, hornblende). We argue that the generation of seismic lamination and anisotropy in the lower crust is a consequence of the same tectonic process, that is, ductile deformation in a warm and low-viscosity lower crust. This process takes place preferably in areas of extension. Heterogeneous rock units are formed that are generally felsic in composition, but that contain intercalations of mafic intrusions. The latter have acted as heat sources and provide the necessary seismic impedance contrasts. The observed seismic anisotropy is attributed to lattice preferred orientation (LPO) of major minerals, in particular of mica and hornblende, but also of olivine. A transversely isotropic symmetry system, such as expected for sub-horizontal layering, is found in only half of the field studies. Azimuthal anisotropy is encountered in the rest of the cases. This indicates differences in the horizontal components of tectonic strain, which finally give rise to differences in the evolution of the rock fabric.
2011
The northeastern Tibet and the Ordos plateau connects east China and west China, which are dominated by horizontal extension and compression, respectively. Knowledge of seismic anisotropy beneath this transitional region can provide important constraints on deformation pattern of the crust and lithosphere mantle during an orogeny process. We measured SKS wave splitting parameters from the new installed regional networks and obtained a detailed anisotropy map for 119 broadband stations. Beneath the NE margin of Tibet, the observed WNW fast polarization direction is parallel to the surface geological features. The coherence between the observed geodetic motion of the crust and fast axis direction suggests that the vertical coherent deformation of the lithosphere is the dominate source for the observed seismic anisotropy. Further east to the Qinling orogenic belt, the fast axis direction tracks change in strike of the faults, with the fast direction aligning almost EW. We suggest that both the lithosphere mantle and east extrusion of mantle material contribute to the observed anisotropy. Small value of delay time is observed interior the thick-rooted Ordos plateau, suggesting a rigid and stable lithosphere with little deformation. The deviation of fast polarization direction beneath the adjacent rifting regions might be caused by the edge flow induced by sharp changes in the thickness of lithosphere. Our results propose that the upper crust and mantle lithosphere beneath the northeastern Tibet are at least partly coupled, or subjected to the same boundary conditions, which is inconsistent with the channelized lower crustal flow model.
Mantle structural geology from seismic anisotropy
Seismic anisotropy is a ubiquitous feature of the subcontinental mantle. This can be inferred both from direct seismic observations of shear wave splitting from teleseismic shear waves, as well as the petrofabric analyses of mantle nodules from kimberlite pipes. The anisotropy is principally due to the strain-induced lattice preferred orientation (LPO) of olivine. The combined use of these mantle samples, deformation experiments on olivine, and numerical modeling of LPO, provides a critical framework for making inferences about mantle deformation from observed seismic anisotropy. In most cases there is a close correspondence between mantle deformation derived from seismic observations of anisotropy, and crustal deformation, from the Archean to the present. This implies that the mantle plays a major, if not dominant role in continental deformation. No clear evidence is found for a continental asthenospheric decoupling zone, suggesting that continents are probably coupled to general mantle circulation.