Microscopy with a Deterministic Single Ion Source (original) (raw)

Transmission Microscopy with Nanometer Resolution Using a Deterministic Single Ion Source

Physical review letters, 2016

We realize a single particle microscope by using deterministically extracted laser-cooled ^{40}Ca^{+} ions from a Paul trap as probe particles for transmission imaging. We demonstrate focusing of the ions to a spot size of 5.8±1.0 nm and a minimum two-sample deviation of the beam position of 1.5 nm in the focal plane. The deterministic source, even when used in combination with an imperfect detector, gives rise to a fivefold increase in the signal-to-noise ratio as compared with conventional Poissonian sources. Gating of the detector signal by the extraction event suppresses dark counts by 6 orders of magnitude. We implement a Bayes experimental design approach to microscopy in order to maximize the gain in spatial information. We demonstrate this method by determining the position of a 1 μm circular hole structure to a precision of 2.7 nm using only 579 probe particles.

Optimised focusing ion optics for an ultracold deterministic single ion source targeting nm resolution

Journal of Modern Optics, 2009

Using a segmented ion trap with mK laser-cooled ions we have realised a novel single ion source which can deterministically deliver a wide range of ion species, isotopes or ionic molecules [Schnitzler et al., Phys. Rev. Lett. 102, 070501 (2009)]. Experimental data is discussed in detail and compared with numerical simulations of ion trajectories. For the novel ion source we investigate numerically the influence of various extraction parameters on fluctuations in velocity and position of the beam. We present specialized ion optics and show from numerical simulations that nm resolution is achievable. The Paul trap, which is used as a single ion source, together with the presented ion optics, constitutes a promising candidate for a deterministic ion implantation method for applications in solid state quantum computing or classical nano-electronic devices.

Focusing a deterministic single-ion beam

New Journal of Physics, 2010

We focus down an ion beam consisting of single 40Ca+ ions to a spot size of a few mum using an einzel-lens. Starting from a segmented linear Paul trap, we have implemented a procedure which allows us to deterministically load a predetermined number of ions by using the potential shaping capabilities of our segmented ion trap. For single-ion loading, an efficiency of 96.7(7)% has been achieved. These ions are then deterministically extracted out of the trap and focused down to a 1sigma-spot radius of (4.6 \pm 1.3)mum at a distance of 257mm from the trap center. Compared to former measurements without ion optics, the einzel-lens is focusing down the single-ion beam by a factor of 12. Due to the small beam divergence and narrow velocity distribution of our ion source, chromatic and spherical aberration at the einzel-lens is vastly reduced, presenting a promising starting point for focusing single ions on their way to a substrate.