Isotropy of the small scales of turbulence at low Reynolds number (original) (raw)

1993, Journal of Fluid Mechanics

Spectral local isotropy tests are applied to direct numerical simulation data, mainly at the centreline of a fully developed turbulent channel flow. Despite the small Reynolds number of the simulation, the high-wavenumber behaviour of velocity and vorticity spectra is consistent with local isotropy. This consistency is verified by the relationship between streamwise wavenumber spectra and spanwise wavenumber spectra. The high-wavenumber behaviour of the pressure spectrum is also consistent with local isotropy and compares favourably with the calculation of Batchelor (1951), which assumes isotropy and joint normality of the velocity field at two points in space. The latter assumption is validated by the shape but not the magnitude of the quadruple correlation of the streamwise velocity fluctuation at small separations. There is only partial support for local spectral isotropy away from the centreline as the magnitude of the mean strain rate increases.

Sign up for access to the world's latest research.

checkGet notified about relevant papers

checkSave papers to use in your research

checkJoin the discussion with peers

checkTrack your impact

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.