An ANN-Based Power System Emergency Control Scheme in the Presence of High Wind Power Penetration (original) (raw)

Abstract

Re-evaluation of emergency control and protection schemes for distribution and transmission networks are one of the main problems posed by wind turbines in power systems. Change of operational conditions and dynamic characteristics influence the requirements to control and protection parameters.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (291)

  1. Alexander, J.F., Renuka, G., Jayabharath, R.D.: New Power Sensitivity Method of Ranking Branch Outage Contingencies for Voltage Collapse. IEEE Transactions on Power Systems 17(2), 265-270 (2002)
  2. Bevrani, H.: Robust Power System Frequency Control. Springer, New York (2009)
  3. Bevrani, H., Ledwich, G., Ford, J.J.: On the Use of df/dt in Power System Emergency Control. In: Proceedings 2009 IEEE Power Systems Conference & Exposition, Seattle, Washington, USA (2009)
  4. Bevrani, H., Ledwich, G., Dong, Z.Y., Ford, J.J.: Regional Frequency Response Anal- ysis under Normal and Emergency Conditions. Electric Power Systems Research 79, 837-845 (2009)
  5. Bevrani, H., Ledwich, G., Ford, J.J., Dong, Z.Y.: On Power System Frequency Control in Emergency Conditions. Journal of Electrical Engineering & Technology 3(4), 499-508 (2008)
  6. Bevrani, H., Hiyama, T.: On Load-Frequency Regulation with Time Delays: Design and Real Time Implementation. IEEE Transactions on Energy Conversion 24(1), 292-300 (2009)
  7. Bevrani, H., Ghosh, A., Ledwich, G.: Renewable Energy Resources and Frequency regulation: Survey and New Perspectives. Will be submitted to IET Renewable Power Generation (2009)
  8. Bijwe, P.R., Nanda, J., Puttabuddhi, K.L.: Ranking of line outages in an AC-DC sys- tem causing overload and voltage problems. IEE Proceedings-C 138(3), 207-211 (1991)
  9. Claudio, A.C., Nadarajah, M., Federico, M., John, R.: Linear Performance Indices to Predict Oscillatory Stability Problems in Power Systems. IEEE Transactions on Power Systems 19(2), 1104-1114 (2004)
  10. Ejebe, G.C., Wollenberg, B.F.: Automatic Contingency Selection. IEEE Transactions on Power Apparatus and Systems PAS-98(1), 97-109 (1979)
  11. El-Saadawi, M.M., Kaddah, S.S., Osman, M.G., Abdel-Wahab, M.N.: Impact of wind farms on contingent power system voltage stability. In: 12th International Middle-East Power System Conference, pp. 637-644 (2008) A u t h o r P e r s o n a l C o p y 12. Erlich, I., Rensch, K., Shewarega, F.: Impact of large wind power generation on fre- quency stability. In: Proc. of Power Engineering Society General Meeting (2006) (CD ROM)
  12. Ford, J.J., Bevrani, H., Ledwich, G.: Adaptive Load Shedding and Regional Protection. International Journal of Electrical Power and Energy Systems 31, 611-618 (2009)
  13. FRCC Automatic Underfrequency Load Shedding Program, PRC-006-FRCC-01 (2009), https://www.frcc.com/
  14. Fu, X., Wang, X.: Load Shedding Scheme Ensuring Voltage Stability. In: Power Engi- neering Society General Meeting IEEE, pp. 1-6 (2007)
  15. Gillian, L., Alan, M., Mark, O.M.: Frequency Control and Wind Turbine Technolo- gies. IEEE Transactions on Power Systems 20(4), 1905-1913 (2005)
  16. Gu, X., Canizares, C.A.: Fast prediction of load ability margins using neural networks to approximate security boundaries of power systems. IET Gener. Transm. Distrib., 466-475 (2007)
  17. IEEE PES, power and energy magazine 7(2), March/April Issue (2009)
  18. Jadid, S., Jalilzadeh, S.: Application of Neural Network for Contingency Ranking Based on Combination of Severity Indices. In: Proceedings of World Academy of Science, Engineering and Technology, vol. 5 (2005)
  19. Kundur, P.: Power System Stability and Control. McGraw-Hill, New York (1994)
  20. Marcus, V.A.N., Ja, P.L., Hans, H.Z., Ubiratan, H.B., Rogério, G.A.: Influence of the Variable-Speed Wind Generators in Transient Stability Margin of the Conventional Generators Integrated in Electrical Grids. IEEE Transactions on Energy Conver- sion 19(4), 692-701 (2004)
  21. Moura, R.D., Prada, R.B.: Contingency screening and ranking method for voltage sta- bility assessment. IEE Proc.-Gener. Transm. Distrib. 152(6), 891-898 (2005)
  22. Mukhtiar, S., Ambrish, C.: Power Maximization and Voltage Sag/Swell Ride-through Capability of PMSG based Variable Speed Wind Energy Conversion System. In: An- nual Conference of IEEE on Industrial Electronics, vol. 34, pp. 2206-2211 (2008)
  23. Naoto, Y., Hua-Qiang, L., Hiroshi, S.: A Predictor/Corrector Scheme for Obtaining Q- Limit Points for Power Flow Studies. IEEE Transactions on Power Systems 20(1), 130-137 (2005)
  24. Oscar, E.M.: A Spinning Reserve, Load Shedding, and Economic Dispatch Solution by Bender's Decomposition. IEEE Transactions on Power Systems 20(1), 384-388 (2005)
  25. Pengcheng, Z., Gareth, T., Malcolm: A Novel Q-Limit Guided Continuation Power Flow Method. In: Power and Energy Society General Meeting -Conversion and Deli- very of Electrical Energy, July 20-24, pp. 1-7 (2008)
  26. Power Systems Relaying Committee, IEEE Guide for the Application of Protective Relays Used for Abnormal Frequency Load Shedding and Restoration. IEEE Std C37.117 TM , pp. c1-c43 (2007)
  27. Faranda, R., Pievatolo, A., Tironi, E.: Load Shedding: A New Proposal. IEEE Transac- tions on Power Systems 22(4), 2086-2093 (2007)
  28. Mark, S.H., Keith, A.H., Robert, A.J., Lee, Y.T.: Slope-Permissive Under-Voltage Load Shed Relay for Delayed Voltage Recovery Mitigation. IEEE Transactions on Power 23(3), 1211-1216 (2008)
  29. Simon, H.: Neural Network a Comprehensive foundation. Prentice hall international, Inc., Englewood Cliffs (1999)
  30. Shao-Hua, L., Hsiao-Dong, C.: Continuation Power Flow with Multiple Load Varia- tion and Generation Re-Dispatch Patterns. In: Proc of Power Engineering Society General Meeting (2006) CD ROM A u t h o r P e r s o n a l C o p y 32. Smith, J.C.: Winds of change: Issues in utility wind integration. IEEE Power Energy Mag. 3(6), 20-25 (2005)
  31. Shu-Jen, S.T., Kim-Hoi, W.: Adaptive Under-voltage Load Shedding Relay Design Using Thevenin Equivalent Estimation. In: Power and Energy Society General Meet- ing, pp. 1-8, July 20-24 (2008)
  32. Tarlochan, S.S., Lan, C.: Contingency Screening for Steady-State Security Analysis By Using FFT and Artificial Neural Networks. WEE Transactions on Power Sys- tems 15(1), 421-426 (2000)
  33. Thelma, S.P.F., Lenzi, J.R., Miguel, A.M.: Load Shedding Strategies Using Optimal Load Flow with Relaxation of Restrictions. IEEE Transactions on Power Sys- tems 23(2), 712-718 (2008)
  34. Tikdari, A.: Load Shedding in the Presence of Renewable Energy Sources in a Re- structured Power System Environment, Master Thesis, University of Kurdistan (2009)
  35. Venkataramana, A.: Computational Techniques for Voltage Stability Assessment and Control. Springer, Heidelberg (2006)
  36. Venkataramana, A., Colin, C.: The Continuation Power Flow a Tool for Steady State Voltage Stability Analysis. Transactions on Power Systems 7(1), 416-423 (1992)
  37. Vladimir, V.T.: Under-frequency Load Shedding Based on the Magnitude of the Dis- turbance Estimation. IEEE Transactions on Power Systems 21(3), 1260-1266 (2006)
  38. Vidya, S.S.V., Nutakki, D.R.: Contingency Screening through Optimizing Hopfield Neural Networks Canadian Conference on Electrical and Computer Engineering, vol. 1, pp. 199-204 (1993)
  39. Yeu, R.H., Sauer, P.W.: Post-Contingency Equilibrium Analysis Techniques for Power Systems. In: Annual North American Power Symposium, vol. 37, pp. 429-433 (2005)
  40. Yongning, C., Yanhua, L., Weisheng, W., Huizhu, D.: Voltage Stability Analysis of Wind Farm Integration into Transmission Network. In: International Conference on Power System Technology, pp. 1-7 (2006)
  41. Yuri, V.M., Viktor, I.R., Vladimir, A.S., Nikolai, I.V.: Blackout Prevention in the United States, Europe, and Russia. IEEE Transactions on Energy Conversion 14(3), 749-753 (1999) A u t h o r P e r s o n a l C o p y References
  42. Jauch, C., Matevosyan, J., Ackermann, T., Bolik, S.: International comparison of re- quirements for connection of wind turbines to power systems. Wind Energy 8(3), 295-306 (2005)
  43. Erlich, I., Winter, W., Dittrich, A.: Advanced grid requirements for the integration of wind turbines into the German transmission system. In: IEEE PES General Meeting, Montreal, Canada (June 2006)
  44. Vas, P.: Artificial-intelligence-based electrical machines and drives. Oxford University Press, NewYork (1999)
  45. Bose, B.K.: Modern power electronics and ac drives. Prentice Hall PTR, New Jersey (2001)
  46. Dote, Y., Hoft, R.G.: Intelligent Control: Power Electronic Systems. Oxford University Press, NewYork (1998)
  47. Zilouchian, A., Jamshidi, M. (eds.): Intelligent control systems using soft computing methodologies. CRC Press, Boca Raton (2001)
  48. Simoes, M.G., Bose, B.K., Spiegel, R.J.: Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system. IEEE Transactions on In- dustry Applications 33(4), 956-965 (1997)
  49. Simoes, M.G., Bose, B.K., Spiegel, R.J.: Fuzzy-logic-based intelligent control of a variable-speed cage machine wind generation system. IEEE Transactions on Industry Applications 12(1), 87-95 (1997)
  50. Hillowala, R.M., Sharaf, A.M.: A rule base fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme. IEEE Transactions on Industry Ap- plications 32(1), 57-65 (1996)
  51. Chen, Z., Gomez, S.A., McCormick, M.: A fuzzy logic controlled power electronic system for variable speed wind generation system. In: Eighth International conference on power electronics and variable speed drives, pp. 114-119 (2000)
  52. Soloumah, H.M., Kar, N.C.: Fuzzy logic based vector control of a doubly-fed induc- tion generator for wind power application. Wind Engineering 30(3), 201-224 (2006)
  53. Sousa, G., Bose, B.K.: Fuzzy logic applications to power electronics and drives-an overview. In: Proceedings of IECON 1995, November 1995, pp. 57-62 (1995) A u t h o r P e r s o n a l C o p y 13. Bose, B.K.: Neural network applications in power electronics and motor drives-an in- troduction and perspective. IEEE Transactions on Industrial Electronics 54(1), 14-33 (2007)
  54. Jang, J.S.R.: ANFIS: Adaptive-network based fuzzy inference system. IEEE Transac- tions on System Man, Cybernetics 23(2), 665-685 (1993)
  55. Mamdani, E.H.: Applications of fuzzy algorithm for simple dynamic plant. Proceed- ings of IEEE 121(12), 1585-1588 (1974)
  56. Sugeno, M.: Industrial applications of fuzzy control. Elsevier Science Pub. Co., Amsterdam (1985)
  57. Tsukamoto, Y.: An approach to fuzzy resoning method. In: Gupta, M.M., Saridis, G.N., Gaines, B.R. (eds.) Fuzzy Automata and Decision Processes, pp. 89-102. North-Holland, NY (1977)
  58. Jang, J.S.R.: Fuzzy modeling using generalized neural networks and kalman filter al- gorithm. In: Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI 1991), July 1991, pp. 762-767 (1991)
  59. Blaabjerg, F., Chen, Z.: Power electronics for modern wind turbines, Morgan & Clay- pool Publishers, USA (2006)
  60. Ackermann, T. (ed.): Wind power in power system. John Wiley & Sons, Ltd., England (2005)
  61. Hansen, L.H., et al.: Conceptual survey of generators and power electronics for wind turbines. RISO National Laboratory, Roskilde, Denmark (December 2001)
  62. Homes, D.G., Lipo, T.A.: Pulse Width Modulation for Power Converters: Principles and Practice. IEEE Press, Los Alamitos (2003)
  63. Leonhard, W.: Control of Electrical Drives. Springer, Heidelberg (1985)
  64. Tang, Y., Xu, L.: Flexible active and reactive power control strategy for a variable speed constant frequency generating system. IEEE Transactions on Power Electron- ics 10(4), 472-478 (1995)
  65. Pena, R., Clare, J.C., Asher, G.M.: Doubly fed induction generator using back-to-back PWM converters and its application to variable-speed wind-energy generation. IEE Proceedings of Electric Power Applications 143, 231-241 (1996)
  66. Chowdhury, B.H., Chellapilla, S.: Double-fed induction generator control for variable speed wind power generation. Electrical Power System Research 76, 786-800 (2006)
  67. Rabelo, B., Hofmann, W.: Optimal active and reactive power control with the doubly- fed induction generator in the MW-class wind-turbines. In: Proceedings of Interna- tional Conference on Power Electronics and Drives Systems, Denpasar, Indonesia, October 22-25, pp. 53-58 (2001)
  68. Datta, R., Ranganathan, V.T.: Direct power control of grid-connected wound rotor in- duction machine without rotor position sensors. IEEE Transactions on Power Electron- ics 16, 390-399 (2001)
  69. Xu, L., Cheng, W.: Torque and reactive power control of a doubly fed induction ma- chine by position sensorless scheme. IEEE Transactions on Industrial Applications 31, 636-642 (1995)
  70. Morel, L., Godfroid, H., Mirzaian, A., Kauffmann, J.M.: Double-fed induction ma- chine: converter optimization and field oriented control without position sensor. IEE Proceedings of Electric Power Applications 145, 360-368 (1998)
  71. Zhi, D., Xu, L.: Direct power control of DFIG with constant switching frequency and improved transient performance. IEEE Transactions on Energy Conversion 22(1), 110-118 (2007) A u t h o r P e r s o n a l C o p y 32. Rajpurohit, B.S.: Reactive power capability and performance analysis of grid con- nected unified DFIG for wind power application. Ph.D. Thesis, IIT Kanpur, India (2009)
  72. Petersson, A.: Analysis, modeling and control of doubly-fed induction generators for wind turbines. Ph.D. Thesis, Chalmers University of Technology, Goteborg, Sweden (2005)
  73. Morren, J., Haan, S.W.H.: Ride through of wind turbines with doubly-fed induction generator during a voltage dip. IEEE Transactions on Energy Conversion 20(2), 435-441 (2005)
  74. Flannery, P., Venkataramanan, G.: A grid fault tolerant doubly fed induction generator wind turbine via series connected grid side converter. In: WINDPOWER 2006, Pittsburgh, USA, June 4-7 (2006)
  75. Flannery, P., Venkataramanan, G.: A unified architecture for doubly-fed induction generator wind turbines using a parallel grid-side rectifier and series grid side con- verter. In: Power Conversion Conference-Nagoya 2007, April 2007, pp. 1442-1449 (2007)
  76. Wang, S., Ding, Y.: Stability analysis of field oriented doubly-fed induction machine drive based on computer simulation. Electric Machines and Power Systems 21(1), 11-24 (1993)
  77. Mei, F., Pal, B.: Modal analysis of grid-connected doubly-fed induction generators. IEEE Transactions on Energy Conversion 22(3) (September 2007)
  78. Wu, F., Zhang, X.P., Godfrey, K., Ju, P.: Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator. IET Proceedings of Generation Transmission and Distribution 1(5), 751-760 (2007)
  79. Singh, B., Singh, S.N.: Reactive capability limitation of doubly-fed induction genera- tors. Electric Power Components & Systems 37(4), 427-440 (2009)
  80. MATLAB/SIMULINK TM , http://www.mathworks.com References
  81. Karaki, S.H., Chedid, R.B., Ramadan, R.: Probabilistic production costing of diesel- wind energy conversion systems. IEEE Trans on Energy Conversion 15, 284-289
  82. Pandiaraj, K., Taylor, P., Jenkins, N.: Distributed load control autonomous renewable energy systems. IEEE Trans on Energy Conversion 16, 14-19 (2001)
  83. Stavrakakis, G.S., Kariniotakis, G.N.: A general simulation algorithm for the accurate assessment of isolated diesel -wind turbines systems interaction: part 1: A general multimachine power system model. IEEE Trans on Energy Conversion 10, 577-583 (1995)
  84. Uhlen, K., Foss, B.A., Gjosaeter, O.B.: Robust control and analysis of a wind-diesel hybrid power plant. IEEE Trans on Energy Conversion 9, 701-708 (1994)
  85. Chedid, R.B., Karaki, S.H., Chadi, E.C.: Adaptive fuzzy control for wind-diesel weak power systems. IEEE Trans on Energy Conversion 15, 71-78 (2000)
  86. Ko, H.S., Jatskevich, J.: Power quality control of wind-hybrid power generation sys- tem using fuzzy-LQR controller. IEEE Trans on Energy Conversion 22, 516-527 (2007)
  87. Ko, H.S., Kang, M.J., Boo, C.J., Jwa, C.K., Kang, S.S., Kim, H.C.: Power quality con- trol of hybrid wind power generation system using fuzzy-robust controller. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds.) ICONIP 2007, Part II. LNCS, vol. 4985, pp. 468-477. Springer, Heidelberg (2008)
  88. Ko, H.S., Lee, K.Y., Kang, M.J., Kim, H.C.: Power quality control of an autonomous wind-diesel power system based on hybrid intelligent controller. Neural Networks 21, 1439-1446 (2008)
  89. Ise, T., Kita, M., Taguchi, A.: A hybrid energy storage with a SMES and secondary battery. IEEE Trans. on Applied Superconducting 15, 1915-1918 (2005)
  90. Passino, K.M.: Fuzzy control: theory and applications. Addison-Wesley Publishing, Reading (1997)
  91. Yen, J., Langari, R.: Fuzzy logic: intelligence, control, and information. Prentice-Hall, Englewood Cliffs (1999)
  92. Park, Y.M., Moon, U.C., Lee, K.Y.: A self-organizing fuzzy logic controller for dy- namic systems using fuzzy auto-regressive moving average (FARMA) model. IEEE Trans on Fuzzy Systems 3, 75-82 (1995)
  93. Park, Y.M., Moon, U.C., Lee, K.Y.: A self-organizing power system stabilizer using fuzzy auto-regressive moving average (FARMA) model. IEEE Trans on Energy Con- version 11, 442-448 (1995)
  94. Park, Y.M., Choi, M.S., Lee, K.Y.: An optimal tracking neuro-controller for nonlinear dynamic systems. IEEE Trans on Neural Networks 7, 1099-1110 (1996)
  95. Harnold, C.L.M., Lee, K.Y., Lee, J.H., Park, Y.M.: Free model based adaptive inverse control for dynamic systems. In: Proc. the 37th IEEE Conf on Decision and Control, Tampa, Florida, pp. 507-512 (1998)
  96. Krause, P.C., Wasynczuk, O., Sudhoff, S.D.: Analysis of electrical machinery. McGraw-Hill, New York (1986)
  97. International Electrotechical Commision, Publication 34-10, Rotating electrical ma- chines, Part 10: Conventions for description of synchronous machines, Geneve (1975)
  98. Niimura, T., Ko, H.S., Ozawa, K.: A day-ahead electricity market price prediction based on fuzzy regression model in deregulated environment. In: IEEE International Joint Conf. on Neural Networks, vol. 2, pp. 1362-1366 (2002)
  99. Ogata, K.: Modern control engineering. Prentice-Hall, New Jersy (1986)
  100. Barnes, E.R.: Affine transform method. Mathematical Programming 36, 174-182 (1986)
  101. Uhlen, K., Foss, B.A., Gjosaeter, O.B.: Robust control and analysis of a wind-diesel hybrid power plant. IEEE Trans on Energy Conversion 9, 701-708 (1994) A u t h o r P e r s o n a l C o p y 22. Garduno-Ramirez, R., Lee, K.Y.: Power plant coordinated-control with wide-range control-loop interaction compensation. In: Proc. the 15 th IFAC World Congress, Barcelona, Spain, (CD) paper #2407 (2002)
  102. Kassakian, J.G., Schlecht, M.F., Verghese, G.C.: Principles of power electronics. Addison-Wesley Publishing, New York (1992)
  103. Utkin, V.I., Guldner, J., Shi, J.: Sliding modes in electromechanical systems. Taylor and Francis, Philadelphia (1999)
  104. Haykin, S.: Neural networks: A comprehensive foundation. Prentice Hall, New Jersey (1998)
  105. Ng, G.W.: Application of neural networks to adaptive control of nonlinear systems. John Wiley and Sons Inc., Chichester (1997)
  106. Madsen, P.P.: Neural network for optimization of existing control systems. In: Proc. IEEE International Joint Conf. on Neural Networks, pp. 1496-1501 (1995)
  107. Tripathy, S.C., Kalantar, M., Balasubramanian, R.: Dynamics and stability of wind and diesel turbine generator with superconducting magnetic energy storage unit on an iso- lated power system. IEEE Trans on Energy Conversion 6, 579-585 (1991) References
  108. Adzic, E., Ivanovic, Z., Adzic, M., Katic, V.: Optimum fuzzy logic control of induction ge- nerator in wind turbine application. In: Proc. of 6 th International Symposium on Intelli- gent Systems and Informatics, Subotica, pp. 1-5 (2008)
  109. Anstrom, K.J., Wittenmark, B.: Adaptive Control. Addison-Wesley, Reading (1989)
  110. Azli, N.A., Wong, S.N.: Development of a DSP-based Fuzzy PI Controller for an Online Optimal PWM Control Scheme for a Multilevel Inverter. In: Proc. of International Con- ference on Power Electronics and Drives Systems, vol. 2, pp. 1457-1461 (2005)
  111. Balazinski, M., Czogala, E., Gravelle, S.: Automatic tool selection using a fuzzy decision support system. In: Proc. of IEEE International Conference on Fuzzy Systems, vol. 2, pp. 615-620 (1995)
  112. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)
  113. Borghetti, A., Caldon, R., Guerrieri, S., Rossetto, F.: Dispersed generators interfaced with distribution systems: dynamic response to faults and perturbations. In: Proc. of IEEE Power Tech Conference Proceedings, vol. 2 (2003)
  114. Boukhezzar, B., Siguerdidjane, H., Hand, M.: Nonlinear control of variable speed wind tur- bines for load reduction and power optimisation. In: Proc. of 44 th AIAA aerospace sciences meeting and exhibit, Nevada (2006)
  115. Bueno, E.J., CÓbreces, S., RodrÍguez, F.J., HernÁndez, A., Espinosa, F.: Design of a Back- to-Back NPC Converter Interface for Wind Turbines With Squirrel-Cage Induction Ge- nerator. IEEE Trans. On Energy Conversion 23(3), 932-945 (2008)
  116. Calderaro, V., Galdi, V., Piccolo, A., Siano, P.: A fuzzy controller for maximum energy ex- traction from variable speed wind power generation systems. Electric Power Systems Research 78, 1109-1118 (2008)
  117. Calderaro, V., Galdi, V., Piccolo, A., Siano, P.: Grid Impact And Integration Of Micro Wind Generation. In: Proc. of 20 th Int. Conf. on Electr. Distr. CIRED, vol. 1 (2009)
  118. Cecati, C., Dell'Aquila, A., Liserre, M., Ometto, A.: A fuzzy-logic-based controller for ac- tive rectifier. IEEE Trans. on Industry Applications 39(1), 105-112 (2003)
  119. Cecati, C., Dell'Aquila, A., Lecci, A., Liserre, M., Monopoli, V.G.: FPGA-based multilevel modulations for H-bridge-based converters. In: Proc. of IEEE International Symposium on Industrial Electronics, vol. 2, pp. 95-962 (2004)
  120. Cecati, C., Dell'Aquila, A., Lecci, A.: Implementation Issues of a fuzzy-logic-based three- phase active rectifier employing only voltage sensors. IEEE Trans. on Industrial Elec- tronics 52(2), 378-385 (2005)
  121. Cecati, C., Piccolo, A., Siano, P.: Multilevel Inverters and Fuzzy Logic for Fuel Cells Pow- er Conditioning and Control. IEEE Trans. on Industry Applications (2009) (submitted) A u t h o r P e r s o n a l C o p y Chen, W.L., Hsu, Y.Y.: Unified voltage and pitch angle controller for wind-driven induc- tion generator system. IEEE Trans. on Aerospace and Electronic Systems 44(3), 913-926 (2008)
  122. Chen, Z., Gomez, S.A., McCormick, M.: A fuzzy logic controlled power electronic system for variable speed wind energy conversion systems. In: Proc. of Eighth International Conference on Power Electronics and Variable Speed Drives, IET, London, pp. 114-119 (2000)
  123. Chinchilla, M., Arnaltes, S., Burgos, J.C.: Control of permanent magnet generators applied to variable-speed wind-energy systems connected to the grid. IEEE Trans. on Energy Conversion 21(1), 130-135 (2006)
  124. El-Hawary, M.E.: Fuzzy theory in electric power systems. In: El-Hawary, M.E. (ed.) Elec- tric power applications of fuzzy systems, pp. 7-11. IEEE Press, New York (1998)
  125. El Mokadem, M., Courtecuisse, V., Saudemont, C., Robyns, B., Deuse, J.: Fuzzy logic su- pervisor-based primary frequency control experiments of a variable-speed wind genera- tor. IEEE Trans. on Power Systems 24(1), 407-417 (2009)
  126. Freris, L.L.: Wind Energy Conversion Systems, pp. 182-184. Prentice-Hall, Englewood Cliffs (1990)
  127. Galdi, V., Piccolo, A., Siano, P.: Designing an adaptive fuzzy controller for maximum wind energy extraction. IEEE Trans. on Energy Conversion 28, 559-569 (2008)
  128. Galdi, V., Piccolo, A., Siano, P.: Exploiting maximum energy from variable speed wind power generation systems by using an adaptive Takagi-Sugeno-Kang fuzzy model. Energy Conversion And Management 50, 413-421 (2009)
  129. Green, A., Sasiadek, J.Z.: Heuristic Design of a Fuzzy Controller for a Flexible Robot. IEEE Trans. on Control Systems Technology 14(2), 293-300 (2006)
  130. Gupta, T., Bourdreaux, R.R., Nelms, R.M., Hung, J.Y.: Implementation of a fuzzy control- ler for DC-DC converters using an inexpensive 8-b microcontroller. IEEE Trans. on In- dustrial Electronics 44(5), 661-669 (1997)
  131. Jasinski, M., Liserre, M., Blaabjerg, F., Cichowlas, M.: Fuzzy logic current controller for PWM rectifiers. In: Proc. of 28 th Annual Conference of the IEEE Industrial Electronics Society, pp. 1300-1305 (2002)
  132. Johnson, K.E., Pao, L.Y., Balas, M.J., Fingersh, L.J.: Control of variable-speed wind tur- bines: standard and adaptive techniques for maximizing energy capture. IEEE Control Systems Magazine 26(3), 70-81 (2006)
  133. Kana, C.L., Thamodharan, M., Wolf, A.: System management of a wind energy converter. IEEE Trans. on Power Electronics 16(3), 375-381 (2001)
  134. Kaur, K., Chowdhury, S., Chowdhury, S.P., Mohanty, K.B., Domijan, A.: Fuzzy logic based control of variable speed induction machine wind generation system. In: Proc. of Power and Energy Society General Meeting, pp. 1-11. IEEE, Pittsburgh (2008)
  135. Knight, A.M., Peters, G.E.: Simple wind energy controller for an expanded operating range. IEEE Trans. on Energy Conversion 20(2), 459-466 (2005)
  136. Hilloowala, R.M., Sharaf, A.M.: A rule-based fuzzy logic controller for a PWM inverter in a stand alone wind energy conversion scheme. IEEE Trans. on Industry Applica- tions 32(1), 57-65 (1996)
  137. Li, H., Shi, K.L., McLaren, P.G.: Neural-network-based sensorless maximum wind energy capture with compensated power coefficient. IEEE Trans. on Industry Applications, vol 41(6), 1548-1556 (2005)
  138. Leithead, W.E., Connor, B.: Control of variable speed wind turbines: design task. Interna- tional Journal of Control 73(13), 1189-1212 (2000) A u t h o r P e r s o n a l C o p y Mattavelli, P., Rossetto, L., Spiazzi, G., Tenti, P.: General-Purpose fuzzy controller for DC- DC converters. IEEE Trans. on Power Electronics 12(1), 79-86 (1997)
  139. Mendel, J.M., Mouzouris, G.C.: Designing Fuzzy Logic Systems. IEEE Trans. on Circuits and Systems 44(11), 885-895 (1997)
  140. Mirecki, A., Roboam, X., Richardeau, F.: Architecture Complexity and Energy Efficiency of Small Wind Turbines. IEEE Trans. on Industrial Electronics 54(1), 660-670 (2007)
  141. Mohamed, S.N.F., Azli, N.A., Salam, Z., Ayob, S.M.: Fuzzy Sugeno-type fuzzy logic con- troller (SFLC) for a Modular Structured Multilevel Inverter (MSMI). In: Proc. of Power and Energy Conference, pp. 599-603 (2008)
  142. Mohan, N., Undeland, T., Robbins, W.P.: Power electronics: converters, applications and design, pp. 200-225. John Wiley & Sons, USA (1995)
  143. Muljadi, E., Butterfield, C.P.: Pitch-controlled variable-speed wind turbine generation. IEEE Trans. on Industry Applications 37(1), 240-246 (2001)
  144. Portillo, R.C., Prats, M.M., Leon, J.I., Sanchez, J.A., Carrasco, J.M., Galvan, E., Franquelo, L.G.: Modeling Strategy for Back-to-Back Three-Level Converters Applied to High-Power Wind Turbines. IEEE Trans. on Industrial Electronics 53(5), 1483-1491 (2006)
  145. Saetieo, S., Torrey, D.A.: Fuzzy logic control of a space vector PWM current regulator for three-phase power converters. IEEE Trans. on Power Electronics 13(3), 419-426 (1998)
  146. Senjyu, T., Kaneko, T., Yona, A., Urasaki, N., Funabashi, T., Yamada, F.: Output power control for large wind power penetration in small power system. In: Proc. of Power En- gineering Society General Meeting, pp. 1-7. IEEE, Tampa (2007)
  147. Simoes, M.G., Farret, F.A.: Alternative Energy Systems: Design and Analysis with Induc- tion Generators. CRC Press Taylor & Francis Group (2007)
  148. Simoes, M.G., Bose, B.K., Spiegel, R.J.: Fuzzy logic based intelligent control of a variable speed cage machine wind generation system. IEEE Trans. on Power Electronics 12(1), 87-95 (1997a)
  149. Simoes, M.G., Bose, B.K., Spiegel, R.J.: Design and performance evaluation of a fuzzy- logic-based variable-speed wind generation system. IEEE Trans. on Industry Applica- tions 33(4), 956-965 (1997b)
  150. Song, S.H., Kang, S., Hahm, N.K.: Implementation and control of grid connected AC-DC- AC power converter for variable speed wind energy conversion system. In: Proc. of Appl. Power Electron. Conf. Expo., vol. 1, pp. 154-158 (2003)
  151. Tafticht, T., Agbossou, K., Cheriti, A., Doumbia, M.L.: Output power maximization of a permanent magnet synchronous generator based standalone wind turbine. In: Proc. of IEEE ISIE, Montreal, pp. 2412-2416 (2006)
  152. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. on Systems, Man and Cybernetics 15, 116-132 (1985)
  153. The MathWorks, SimPowerSystems For Use with Simulink, User's Guide Version 4 (2007)
  154. Tzou, Y., Hsu, H.: FPGA Realization of Space-Vector PWM Control IC for Three-Phase PWM Inverters. IEEE Trans. on Power Electronics 12(6), 953-963 (1997)
  155. Valtchev, V., Bossche, A., Ghijselen, J., Melkebeek, J.: Autonomous renewable energy conversion system. Renewable Energy 19(1), 259-275 (2000)
  156. Yen, J., Wang, L.: Application of statistical information criteria for optimal fuzzy model construction. IEEE Trans. on Fuzzy Systems 6(3), 362-372 (1998)
  157. Yamamura, N., Ishida, M., Hori, T.: A simple wind power generating system with perma- nent magnet type synchronous generator. In: Proc. of IEEE Int. Conf. Power Electron. Drive Syst., vol. 2, pp. 849-854 (1999) http://www.winddata.com/ References
  158. Eriksen, P.B., Ackermann, T., Abildgaard, H., Smith, P., Winter, W., Rodriguez Garcia, J.M.: System operation with high wind penetration. IEEE Power Energy Mag 3(6), 65-74 (2005) A u t h o r P e r s o n a l C o p y
  159. Lei, Y., Mullane, A., Lightbody, G., Yacamini, R.: Modeling of the wind turbine with a doubly fed induction generator for grid integration studies. IEEE Transactions on Energy Conversion 21(1), 257-264 (2006)
  160. Mei, F., Pal, B.C.: Modeling snd small signal analysis of a grid connected doubly fed induction generator. In: Proc. of IEEE PES General Meeting, San Francisco, pp. 358-367 (2005)
  161. Mei, F., Pal, B.C.: Modal analysis of grid connected doubly fed induction generator. IEEE Transactions on Energy Conversion 22(3), 728-736 (2007)
  162. Yamamoto, M., Motoyoshi, O.: Active and reactive power control for doubly-fed wound rotor induction generator. IEEE Transactions on Power Electronics 6(4), 624-629 (1991)
  163. Hughes, F.M., Anaya-Lara, O., Jenkins, N., Strbac, G.: Control ofdfig-based wind generation for power network support. IEEE Transactions on Power Systems 20(4), 1958-1966 (2005)
  164. Morren, J., de Haan, S.W.H.: Ride through of wind turbines with doubly-fed induc- tion generator during a voltage dip. IEEE Transactions on Energy Conversions 20(2), 435-441 (2005)
  165. Bansal, R.C.: Bibliography on fuzzy sett theory application to power systems (1994-2001). IEEE Trans. Power Syst. 18(4), 1291-1299 (2003)
  166. Tomsovic, K., Chow, M.Y. (eds.): Tutorial on Fuzzy Logic Applications in Power Systems. IEEE-PES Winter Meeting, Singapore (January 2000)
  167. Song, Y.H. (ed.): Modern Optimization Techniques in Power Systems. Kluwer Academic Publishers, Netherlands (1999)
  168. Song, Y.H., Johns, A.T.: Applications of Fuzzy Logic in Power Systems: Part 2. Comparison and Integration with Expert Systems, Neural Networks and Genetic Al- gorithms. IEE Power Engineering Journal 12(4), 185-190 (1998)
  169. Song, Y.H., Johns, A.T.: Applications of Fuzzy Logic in Power Systems: Part 3. Ex- ample Applications. IEE Power Engineering Journal 13(2), 97-103 (1999)
  170. Song, Y.H., Dunn, R.: Fuzzy Logic and Hybrid Systems, in Artificial Intelligence Techniques in Power Systems. In: Wardwick, K., Ekwue, A., Aggarwal, R. (eds.) Ar- tificial Intelligence Techniques in Power Systems, London, UK. IEE Power Engineer- ing Series, vol. 22, pp. 68-86 (1997)
  171. Song, Y.H., Johns, A.T.: Applications of Fuzzy Logic in Power Systems: Part 1. Gen- eral Introduction to Fuzzy Logic. IEE Power Engineering Journal 11(5), 219-222 (1997)
  172. Madan, S., Bollinger, K.E.: Applications of Artificial Intelligence in Power Systems. Electric Power System Research 41(2), 117-131 (1997)
  173. Laughton, M.A.: Artificial Intelligence Techniques in Power Systems. In: Wardwick, K., Ekwue, A., Aggarwal, R. (eds.) Artificial Intelligence Techniques in Power Systems, London, UK. IEE Power Engineering Series, vol. 22, pp. 1-18 (1997)
  174. Mishra, S., Dash, P.K., Panda, G.: TS-fuzzy controller for UPFC in a multi machine power system. In: IEE proceedings on generation, transmission and distribution, January 2000, vol. 147(1), pp. 15-22 (2000)
  175. Ying, H.: Constructing non-linear variable gain controllers via the Takagi-Sugeno fuzzy control. IEEE Trans. Fuzzy Syst. 6(2), 226-235 (1998)
  176. Hughes, F.M., Lara, O.A., Jenkins, N., Strbac, G.: A power system stabilizer for dfig- based wind generation. IEEE Transactions on Power Systems 21(2), 763-772 (2006) References
  177. Manwell, J.F., Mcgowan, J.G., Rogers, A.L.: Wind Energy Explained -Theory, De- sign and Application. Wiley, England (2002)
  178. Dobesch, H., Kury, G.: Basic Meteorological Concepts and Recommendations for the exploitation of wind energy in the atmospheric boundary layer, Vienna, Austria (2001)
  179. Gasch, R., Twele, J.: Wind Power Plants -Fundamentals, Design, Construction and Operation. James & James Science Publishers Ltd., London (2004)
  180. Spera, D.: Wind Turbine Technology -Fundamental Concepts of Wind Turbine Engi- neering. Asme Press, New York (1994)
  181. Heier, S.: Grid Integration of Wind Energy Conversion Systems. John Wiley, Chichester (1998)
  182. Rosas, P.: Dynamic Influences of Wind Power on the Power System. PhD thesis. Technical University of Denmark (2003)
  183. Akhmatov, V.: Analysis of Dynamic Behaviour of Electrical Power Systems with Large Amount of Wind Power. PhD thesis, Lyngby, Denmark (2003)
  184. Hansen, A., Bindner, H., Rebsdorf, A.: Improving Transition between Power Optimi- zation and Power Limitation of Variable Speed/Variable Pitch Wind Turbines. In: Pro- ceedings of European Wind Energy Conference and Exhibition, Nice, pp. 889-892 (1999)
  185. Simões, M.G., Bose, B.K., Spiegel, R.J.: Design and Performance Evaluation of a Fuzzy-Logic-Based Variable-Speed Wind Generation System. IEEE Transactions on Industry Applications 33(4), 956-963 (1997)
  186. Ekelund, T.: Modelling and Linear Quadratic Optimal Control of Wind Turbines. PhD thesis. Göteborg, Chalmers University of Technology, Sweden (1997)
  187. Vihriala, H.: Control of Variable Speed Wind Turbines. PhD thesis. Tampere Univer- sity of Technology, Tampere, Finland (2002)
  188. Tanaka, T., Oumiya, T.: Output Control by Hill-Climbing Method for a Small Wind Power Generating System. Renewable Energy 12(4), 387-400 (1997)
  189. Chapman, C.: The Analysis of Time Series. Chapman & Hall/CRC, New York (1995) A u t h o r P e r s o n a l C o p y 14.
  190. Costa, A., Crespo, A., Navarro, J., Madsen, H., Feitosa, E.: A Review on the Young History of the Wind Power Short-Term Prediction. Renewable and Sustainable Energy Reviews 12, 1725-1744 (2008)
  191. Lange, M., Focken, U.: Physical Approach to Short-Term Wind Power Prediction. Springer, Berlin (2005)
  192. Ross, T.J.: Fuzzy Logic with Engineering Applications. John Wiley, Chichester (2004)
  193. Reznik, L.: Fuzzy Controllers. Newnes, Oxford (1997)
  194. Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Ma- trix Inequality Approach. John Wiley, Chichester (2001)
  195. Wang, L.-X.: Adaptive Fuzzy Systems and Control. Design and Stability Analysis. Prentice-Hall, New Jersey (1994)
  196. Aracil, J., Gordillo, F.: Stability Issues in Fuzzy Control. Physica-Verlag, Heidelberg (2000)
  197. Costa, P., Martins, A., Carvalho, A.: Optimization of Energy Generation in Wind farm Through Fuzzy Control. In: European Wind Energy Conference, EWEC 2004, London, United Kingdom (2004)
  198. Costa, P., Martins, A., Carvalho, A.: Wind Energy Extraction and Conversion: Optimi- zation through Variable Speed Generators and Non Linear Fuzzy Control. In: Euro- pean Wind Energy Conference, EWEC 2006, Athens, Greece (2006)
  199. Carvalho, A., Costa, P., Martins, A.: Increasing Power Wind Generation Through Op- timization of the Dynamics of Control System Based on Accurate Forecasting of the Very Short Term Wind. In: German Wind Energy Conference, DEWEK 2008, Bremen, Germany (2008)
  200. Hayes, M.: Digital Signal Processing. McGraw-Hill, New York (1999) References
  201. Abbey, C., et al.: Transient Modeling and Comparison of Wind Generator Topologies. In: IPST 2005, p. IPST05 -131 (2005) (in Canada)
  202. Abe, K., Ohba, S., Iwamoto, S.: New load frequency control method suitable for large penetration of wind power generations. In: Power Engineering Society General Meet- ing (2006)
  203. Ahamed, T.P.I.: A neural network based automatic generation controller design through reinforcement learning. International Journal of Emerging Electric Power Sys- tems 6 (2006)
  204. Ahamed, T.P.I., Rao, P.S.N., Sastry, P.S.: A reinforcement learning approach to auto- matic generation control. Electric Power Systems Research 63, 9-26 (2002)
  205. Ahamed, T.P.I., Rao, P.S.N., Sastry, P.S.: Reinforcement learning controllers for au- tomatic generation control in power systems having reheat units with GRC and dead- band. International journal of power and energy systems 26, 137-146 (2006)
  206. Anderson, P.M.: Power System Protection. IEEE/Wiley, New York (1999)
  207. Atic, N., Feliachi, A., Rerkpreedapong, D.: CPS1 and CPS2 compliant wedge-shaped model predictive load frequency control. In: Power engineering society general meet- ing, vol. 1, pp. 855-860. IEEE, Los Alamitos (2004)
  208. Banakar, H., Luo, C., Teck Ooi, B.: Impacts of wind power minute-to-minute varia- tions on power system operation. IEEE Transactions on Power Systems 23, 150-160
  209. Bevrani, H., Hiyama, T.: On load-frequency regulation with time delays: design and real-time implementation. IEEE Transaction on Energy Conversion 24, 292-300 (2009)
  210. Bevrani, H., Hiyama, T.: Robust load-frequency regulation: a real-time laboratory ex- periment. Optimal Control Appl. Methods 28, 419-433 (2007)
  211. Bevrani, H.: Robust power system frequency control, 1st edn. Springer, Heidelberg (2009)
  212. Busoniu, L., Babuska, R., De Schutter, B.: A comprehensive survey of multi-agent reinforcement learning. IEEE Transaction on Syst., Man., Cyber., Part C: Applications and Reviews 38, 156-172 (2008)
  213. Chedid, R.B., Karaki, S.H., El-Chamali, C.: Adaptive fuzzy control for wind-diesel weak power systems. IEEE Transactions on Energy Conversion 15, 71-78 (2000)
  214. Demiroren, A., Zeynelgil, H.L., Sengor, N.S.: Automatic generation control for power system with SMES by using neural network controller. Electr. Power Comp Sys- tem 31, 1-25 (2003)
  215. Dokopoulos, P.S., Saramourtsis, A.C., Bakirtzis, A.G.: Prediction and evaluation of the performance of wind-diesel energy systems. IEEE Transactions on Energy Conver- sion 11, 385-393 (1996)
  216. Eftekharnejad, S., Feliachi, A.: Stability enhancement through reinforcement learning: load frequency control case study. Bulk Power System Dynamics and Control VII, 1-8 (2007)
  217. Ernst, D., Glavic, M., Wehenkel, L.: Power system stability control: reinforcement learning framework. IEEE Transaction on Power System 19, 427-436 (2004)
  218. Gjengedal, T.: System control of large scale wind power by use of automatic genera- tion control (AGC). In: CIGRE/PES, 15-21 (2003)
  219. Hall, D.J., Colclaser, R.G.: Transient modeling and simulation of a tubular solid oxide fuel cell. IEEE Transactions on Energy Conversion 14, 749-753 (1999)
  220. Hiyama, T., Zuo, D., Funabashi, T.: Multi-agent based automatic generation control of isolated stand alone power system. In: International conference on power system tech- nology (2002)
  221. Hiyama, T., Zuo, D., Funabashi, T.: Multi-agent based control and operation of distri- bution system with dispersed power sources. In: Transmission and Distribution Confe- rence and Exhibition, Asia Pacific. IEEE/PES (2002)
  222. Holttinen, H.: Impact of hourly wind power variation on the system operation in the Nordic Countries. Wind Energy 8(2), 197-218 (2005)
  223. Horiuchi, N., Kawahito, T., Sizuki, T.: Power control of induction generator by V/F control for wind energy conversion system. Transactions of IEEJ 118-B, 1170-1176 (1998)
  224. Karnavas, Y.L., Papadopoulos, D.P.: AGC for autonomous power system using com- bined intelligent techniques. Electric power systems research 62, 225-239 (2002)
  225. Kodama, N., Matsuzaka, T., Inomata, N.: The power variation control of a wind gene- rator by using probabilistic optimal control. Transactions of IEEJ 121-B, 22-30 (2001)
  226. Lalor, G., Mullane, A., O'Malley, M.: Frequency control and wind turbine technolo- gies. IEEE Transaction on Power System 20, 1905-1913 (2005)
  227. Lalor, G., Ritchie, J., Rourke, S., Flynn, D., O'Malley, M.J.: Dynamic frequency con- trol with increasing wind generation. In: Power Engineering Society General Meeting (2004)
  228. Lalor, G., et al.: Frequency control and wind turbine technologies. IEEE Transaction on Power System 20, 1905-1913 (2005) A u t h o r P e r s o n a l C o p y 29.
  229. Lindgren, E., Söder, L.: Minimizing regulation costs in multi-area systems with uncer- tain wind power forecasts. Wind Energy-Wiley Inter-science 11, 97-108 (2007)
  230. Lukas, M.D., Lee, K.Y., Ghezel-Ayagh, H.: Development of a stack simulation model for control study on direct reforming molten carbonate fuel cell power plant. IEEE Transactions on Energy Conversion 14, 1651-1657 (1999)
  231. Luo Far, C., Banakar, H.G., Pin-Kwan Keung, H., Ooi, B.T.: Estimation of Wind Pe- netration as Limited by Frequency Deviation. In: Power Engineering Society General Meeting (2006)
  232. Morren, J., de Haan, S.W.H., Kling, W.L., Ferreira, J.A.: Primary power/frequency control with wind turbines and fuel cells. In: Power Engineering Society General Meeting (2006)
  233. Morren, J., de Haan, S.W.H., Kling, W.L., Ferreira, J.A.: Wind turbines emulating in- ertia and supporting primary frequency control. IEEE Transactions on Power Sys- tem 21, 433-434 (2006)
  234. Mullane, A.P.: Advanced control of wind energy conversion systems. Ph.D. disserta- tion, Nat. University of Ireland, Univ. College Cork, Cork, Ireland (2004)
  235. Mullane, A., O'Malley, M.: The inertial-response of induction-machine based wind- turbines. IEEE Transaction on Power System 20, 1496-1503 (2005)
  236. Sathyajith, M.: Wind Energy Fundamentals, Resource Analysis and Economics, 1st edn., pp. 112-114. Springer, Heidelberg (2006)
  237. Senjyu, T., Hayashi, D., Urasaki, N., Funabashi, T.: Oscillation frequency control based on H∞ controller for a small power system using renewable energy facilities in isolated island. In: Power Engineering Society General Meeting (2006)
  238. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. MIT Press, Cam- bridge (1998)
  239. Thathachar, M.A.L., Harita, B.R.: An estimator algorithm for learning automata with changing number of actions. International Journal of General Systems 14, 169-184 (1988)
  240. The United Nations Framework Convention on Climate Change, The Kyoto Protocol (1997), http://unfccc.int/resource/docs/convkp/kpeng.pdf (accessed June 28, 2008)
  241. Vittal, E., et al.: Varying Penetration Ratios of Wind Turbine Technologies for Voltage and Frequency Stability. In: Power and Engineering Society General Meeting, vol. 20, pp. 1-6 (2008)
  242. Vlassis, N.: A concise introduction to multi-agent systems and distributed AI. Fac. Sci. Univ. Amsterdam, Amsterdam, The Netherlands, Tech. Rep. (2003)
  243. Weiss, G. (ed.): Multi-agent systems: a modern approach to distributed artificial intel- ligence. MIT Press, Cambridge (1999)
  244. Wooldridge, M., Weiss, G. (eds.): Intelligent agents, in multi-agent systems, pp. 3-51. MIT Press, Cambridge (1999)
  245. Du, X., Li, P.: Fuzzy logic control optimal realization using GA for multi-area AGC systems. International Journal of Information Technology 12, 63-72 (2006)
  246. Gu, Y.: Multi-agent reinforcement learning for multi-robot systems: a survey. Tech- nical Report, CSM-404 (2004) A u t h o r P e r s o n a l C o p y Author Index Al-Awami, Ali T. 125
  247. Bak-Jensen, Birgitte 1
  248. Benson, Glen 151
  249. Bevrani, H. 215, 407
  250. Burgos-Payán, Manuel 53
  251. Calderaro, V. 337
  252. Carvalho, Adriano S. 383
  253. Castro-Mora, Jose 53
  254. Cecati, C. 337
  255. Chen, Peiyuan 1
  256. Chen, Zhe 1
  257. Conzalez-Rodriguez, Angel G. 53
  258. Costa, Paulo J. 383
  259. Daneshfar, F. 407
  260. Daneshmand, R.P. 407
  261. Dong, Z.Y. 191, 367
  262. Dong, Zhao Yang 167
  263. El-Sharkawi, Mohamed A. 125
  264. Falaghi, Hamid 25, 105
  265. Kim, Ho-Chan 297
  266. Ko, Hee-Sang 297
  267. Kyriakides, Elias 255
  268. Lee, Kwang Y. 297
  269. Li, Fangxing 191, 367
  270. Martins, António J. 383
  271. Mishra, S. 191, 367
  272. Mishra, Y. 191, 367
  273. Osadciw, Lisa Ann 151
  274. Persan, S.A. 53
  275. Piccolo, A. 337
  276. Ramezani, Maryam 105
  277. Riquelme-Santos, Jesus M. 53
  278. Serrano-Conzalez, Javier 53
  279. Siano, P. 337
  280. Siano, Pierluigi 1
  281. Singh, Bharat 255
  282. Singh, Chanan 25, 105
  283. Singh, S.N. 255
  284. Tikdari, A.G. 215
  285. White, Eric 151
  286. Xu, Zhao 167
  287. Xue, Yusheng 167
  288. Yan, Yanjun 151
  289. Yang, Guang Ya 167
  290. Yang, Lihui 167
  291. Ye, Xiang 151