Free Energy Minimization Using the 2-D Cluster Variation Method: Initial Code Verification and Validation (original) (raw)

2-D Cluster Variation Method Free Energy: Fundamentals and Pragmatics

Alianna J. Maren

2019

View PDFchevron_right

The Cluster Variation Method: A Primer for Neuroscientists

Alianna J. Maren

Brain Sciences

View PDFchevron_right

Energy landscapes for a machine learning application to series data

Ritankar Das

The Journal of Chemical Physics, 2016

View PDFchevron_right

Approach to potential energy surfaces by neural networks. A review of recent work

Diogo Latino

International Journal of Quantum Chemistry, 2010

View PDFchevron_right

Solving Minimum Energy Structures with Neural Networks

Brian Barch

2017

View PDFchevron_right

A Variational Approach to Parameter Estimation for Characterizing 2-D Cluster Variation Method Topographies

Alianna J. Maren

arXiv (Cornell University), 2022

View PDFchevron_right

The Cluster Variation Method I: 1-D Single Zigzag Chain Basic Theory, Analytic Solution and Free Energy Variable Distributions at Midpoint (x1 = x2 = 0.5)

Alianna J. Maren

2014

View PDFchevron_right

Optimal spontaneous activity in neural network modeling

Daniel Remondini

Neurocomputing, 2002

View PDFchevron_right

The Cluster Variation Method II: 2-D Grid of Zigzag Chains Basic Theory, Analytic Solution and Free Energy Variable Distributions at Midpoint (x1 = x2 = 0.5)

Alianna J. Maren

2014

View PDFchevron_right

THE THERMODYNAMIC ANALYSIS OF NEURAL COMPUTATION

Eva Deli

J Neurosci Clin Res, 2018

View PDFchevron_right

Thermodynamic Neural Network

Todd Hylton

Entropy, 2020

View PDFchevron_right

An Improved Connectionist Activation Function for Energy Minimization

Gadi Pinkas

1992

View PDFchevron_right

Incorporating long-range electrostatics in neural network potentials via variational charge equilibration from shortsighted ingredients

Stefano de gironcoli

npj computational materials, 2024

View PDFchevron_right

Controlling energy landscapes with correlations between minima

Horacio E Castillo

2016

View PDFchevron_right

Machine-learning free-energy functionals using density profiles from simulations

René van Roij

APL Materials, 2021

View PDFchevron_right

Deep Learning for Molecular Thermodynamics

hassaan malik

Energies

View PDFchevron_right

Advancing Neural Networks: Innovations and Impacts on Energy Consumption

Evgeniia Alshanskaia, Jordi Vallverdú

dvanced Electronic Materials, 2024

View PDFchevron_right

Perspective: Energy Landscapes for Machine Learning

Stefano Martiniani, David Wales

View PDFchevron_right

Neural Networks in Chemistry

Jure Zupan

Angewandte Chemie International Edition in English, 1993

View PDFchevron_right

SA-prop: Optimization of multilayer perceptron parameters using simulated annealing

Victor Eduardo Cerdan Rivas

Lecture Notes in Computer Science, 1999

View PDFchevron_right

On the Thermodynamic Interpretation of Deep Learning Systems

Francesco FAGLIONI

Lecture Notes in Computer Science, 2021

View PDFchevron_right

Thermodynamics of fully connected Blume–Emery–Griffiths neural networks

Toni Verbeiren

Journal of Physics A: Mathematical and …, 2002

View PDFchevron_right

Energy Analysis of Hierarchically Coupled Generalized-Brain-State-in-Box (GBSB) Neural Network

Henrique Borges

View PDFchevron_right

Variational Onsager Neural Networks (VONNs): A thermodynamics-based variational learning strategy for non-equilibrium PDEs

Zequn He

Journal of The Mechanics and Physics of Solids, 2022

View PDFchevron_right

Development of Neural Network Structure with Biological Mechanisms

Joaquin J. Torres, Joaquin Marro

Bio-Inspired Systems: …, 2009

View PDFchevron_right

An energy function for the random neural network

Jose Aguilar

Neural Processing Letters, 1996

View PDFchevron_right

Improving Connectionist Energy Minimization

Rina Dechter

Journal of Artificial Intelligence Research, 1995

View PDFchevron_right

Deep Learning of Activation Energies

William Green

View PDFchevron_right

A Unified Energy-Based Framework for Unsupervised Learning

Sumit Chopra

2007

View PDFchevron_right

Dechter “Improving Connectionist Energy Minimization

Gadi Pinkas

1995

View PDFchevron_right

Neural networks to approach potential energy surfaces: Application to a molecular dynamics simulation

Diogo Latino

International Journal of Quantum Chemistry, 2007

View PDFchevron_right