Free Energy Minimization Using the 2-D Cluster Variation Method: Initial Code Verification and Validation (original) (raw)
A new approach for general artificial intelligence (GAI), building on neural network deep learning architectures, can make use of one or more hidden layers that have the ability to continuously reach a free energy minimum even after input stimulus is removed, allowing for a variety of possible behaviors. One reason that this approach has not been developed until now has been the lack of a suitable free energy equation. The Cluster Variation Method (CVM) offers a means for characterizing 2-D local pattern distributions, or configuration variables, and provides a free energy formalism in terms of these configuration variables. The equilibrium distribution of these configuration variables is defined in terms of a single interaction enthalpy parameter, h, for the case of equiprobable distribution of bistate units. For non-equiprobable distributions, the equilibrium distribution can be characterized by providing a fixed value for the fraction of units in the active state (x1), correspond...