Development of Bacterial Biofilms on Artificial Corals in Comparison to Surface-Associated Microbes of Hard (original) (raw)

Development of bacterial biofilms on artificial corals in comparison to surface-associated microbes of hard corals.

Numerous studies have demonstrated the differences in bacterial communities associated with corals versus those in their surrounding environment. However, these environmental samples often represent vastly different microbial micro-environments with few studies having looked at the settlement and growth of bacteria on surfaces similar to corals. As a result, it is difficult to determine which bacteria are associated specifically with coral tissue surfaces. In this study, early stages of passive settlement from the water column to artificial coral surfaces (formation of a biofilm) were assessed. Changes in bacterial diversity (16S rRNA gene), were studied on artificially created resin nubbins that were modelled from the skeleton of the reef building coral Acropora muricata. These models were dip-coated in sterile agar, mounted in situ on the reef and followed over time to monitor bacterial community succession. The bacterial community forming the biofilms remained significantly different (R = 0.864 p<0.05) from that of the water column and from the surface mucus layer (SML) of the coral at all times from 30 min to 96 h. The water column was dominated by members of the α-proteobacteria, the developed community on the biofilms dominated by γ-proteobacteria, whereas that within the SML was composed of a more diverse array of groups. Bacterial communities present within the SML do not appear to arise from passive settlement from the water column, but instead appear to have become established through a selection process. This selection process was shown to be dependent on some aspects of the physico-chemical structure of the settlement surface, since agar-coated slides showed distinct communities to coral-shaped surfaces. However, no significant differences were found between different surface coatings, including plain agar and agar enhanced with coral mucus exudates. Therefore future work should consider physico-chemical surface properties as factors governing change in microbial diversity.

Characterization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus

2019

Bacterial diversity associated with corals has been studied extensively, however, localization of bacterial associations within the holobiont is still poorly resolved. Here we provide novel insight into the localization of coral-associated microbial aggregates (CAMAs) within tissues of the coral Acropora hyacinthus. In total, 318 and 308 CAMAs were characterized via histological and fluorescent in situ hybridization (FISH) approaches respectively, and shown to be distributed extensively throughout coral tissues collected from five sites in Japan and Australia. The densities of CAMAs within the tissues were negatively correlated with the distance from the coastline (i.e. lowest densities at offshore sites). CAMAs were randomly distributed across the six coral tissue regions investigated. Within each CAMA, bacterial cells had similar morphological characteristics, but bacterial morphologies varied among CAMAs, with at least five distinct types identified. Identifying the location of m...

Insights into the Cultured Bacterial Fraction of Corals

mSystems, 2021

Our paper is the first study to synthesize currently available but decentralized data of cultured microbes associated with corals. We were able to collate 3,055 isolates across a number of published studies and unpublished collections from various laboratories and researchers around the world.

Bacterial assemblages differ between compartments within the coral holobiont

Coral Reefs, 2011

It is widely accepted that corals are associated with a diverse and host species-specific microbiota, but how they are organized within their hosts remains poorly understood. Previous sampling techniques (blasted coral tissues, coral swabs and milked mucus) may preferentially sample from different compartments such as mucus, tissue and skeleton, or amalgamate them, making comparisons and generalizations between studies difficult. This study characterized bacterial communities of corals with minimal mechanical disruption and contamination from water, air and sediments from three compartments: surface mucus layer (SML), coral tissue and coral skeleton. A novel apparatus (the ‘snot sucker’) was used to separate the SML from tissues and skeleton, and these three compartments were compared to swab samples and milked mucus along with adjacent environmental samples (water column and sediments). Bacterial 16S rRNA gene diversity was significantly different between the various coral compartm...

Microbial communities in aquarium corals

2013

Bacterial and ciliate assemblages associated with aquarium corals displaying white syndrome (WS) and brown jelly syndrome (BJS) were investigated. Healthy (n = 10) and diseased corals (WS n = 18; BJS n = 3) were analysed for 16S rRNA gene bacterial diversity, total bacterial abundance and vibriospecific 16S rRNA gene abundance. This was conducted alongside analysis of 18S rRNA gene sequencing targeting ciliates, a group of organisms largely overlooked for their potential as causal agents of coral disease. Despite significant differences between healthy and diseased corals in their 16S rRNA gene bacterial diversity, total bacterial abundance and vibrio-specific rRNA gene abundance, no dominant bacterial ribotypes were found consistently within the diseased samples. In contrast, one ciliate morphotype, named Morph 3 in this study (GenBank Accession Numbers JF831358 for the ciliate isolated from WS and JF831359 for the ciliate isolated from BJS) was observed to burrow into and undernea...