The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells (original) (raw)

Constitutive telomerase expression promotes mammary carcinomas in aging mice

Proceedings of the National Academy of Sciences, 2002

Telomerase is up-regulated in the vast majority of human cancers and serves to halt the progressive telomere shortening that ultimately blocks would-be cancer cells from achieving a full malignant phenotype. In contrast to humans, the laboratory mouse possesses long telomeres and, even in early generation telomerase-deficient mice, the level of telomere reserve is sufficient to avert telomere-based checkpoint responses and to permit full malignant progression. These features in the mouse provide an opportunity to determine whether enforced high-level telomerase activity can serve functions that extend beyond its ability to sustain telomere length and function. Here, we report the generation and characterization of transgenic mice that express the catalytic subunit of telomerase (mTERT) at high levels in a broad variety of tissues. Expression of mTERT conferred increased telomerase enzymatic activity in several tissues, including mammary gland, splenocytes, and cultured mouse embryonic fibroblasts. In mouse embryonic fibroblasts, mTERT overexpression extended telomere lengths but did not prevent culture-induced replicative arrest, thus reinforcing the view that this phenomenon is not related to occult telomere shortening. Robust telomerase activity, however, was associated with the spontaneous development of mammary intraepithelial neoplasia and invasive mammary carcinomas in a significant proportion of aged females. These data indicate that enforced mTERT expression can promote the development of spontaneous cancers even in the setting of ample telomere reserve.

Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations

Cell Cycle, 2014

Telomerase reactivation and immortalization are critical for human carcinoma progression. However, little is known about the mechanisms controlling this crucial step, due in part to the paucity of experimentally tractable model systems that can examine human epithelial cell immortalization as it might occur in vivo. We achieved efficient nonclonal immortalization of normal human mammary epithelial cells (HMEC) by directly targeting the 2 main senescence barriers encountered by cultured HMEC. The stress-associated stasis barrier was bypassed using shRNA to p16 INK4 ; replicative senescence due to critically shortened telomeres was bypassed in post-stasis HMEC by c-MYC transduction. Thus, 2 pathologically relevant oncogenic agents are sufficient to immortally transform normal HMEC. The resultant non-clonal immortalized lines exhibited normal karyotypes. Most human carcinomas contain genomically unstable cells, with widespread instability first observed in vivo in pre-malignant stages; in vitro, instability is seen as finite cells with critically shortened telomeres approach replicative senescence. Our results support our hypotheses that: (1) telomere-dysfunction induced genomic instability in pre-malignant finite cells may generate the errors required for telomerase reactivation and immortalization, as well as many additional "passenger" errors carried forward into resulting carcinomas; (2) genomic instability during cancer progression is needed to generate errors that overcome tumor suppressive barriers, but not required per se; bypassing the senescence barriers by direct targeting eliminated a need for genomic errors to generate immortalization. Achieving efficient HMEC immortalization, in the absence of "passenger" genomic errors, should facilitate examination of telomerase regulation during human carcinoma progression, and exploration of agents that could prevent immortalization.

Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions

The EMBO Journal, 2012

In normal human somatic cells, telomere dysfunction causes cellular senescence, a stable proliferative arrest with tumour suppressing properties. Whether telomere dysfunctioninduced senescence (TDIS) suppresses cancer growth in humans, however, is unknown. Here, we demonstrate that multiple and distinct human cancer precursor lesions, but not corresponding malignant cancers, are comprised of cells that display hallmarks of TDIS. Furthermore, we demonstrate that oncogenic signalling, frequently associated with initiating cancer growth in humans, dramatically affected telomere structure and function by causing telomeric replication stress, rapid and stochastic telomere attrition, and consequently telomere dysfunction in cells that lack hTERT activity. DNA replication stress induced by drugs also resulted in telomere dysfunction and cellular senescence in normal human cells, demonstrating that telomeric repeats indeed are hypersensitive to DNA replication stress. Our data reveal that TDIS, accelerated by oncogene-induced DNA replication stress, is a biological response of cells in human cancer precursor lesions and provide strong evidence that TDIS is a critical tumour suppressing mechanism in humans.

Myc activates telomerase

Genes & Development, 1998

Telomere maintenance has been proposed as an essential prerequisite to human tumor development. The telomerase enzyme is itself a marker for tumor cells, but the genetic alterations that activate the enzyme during neoplastic transformation have remained a mystery. Here, we show that Myc induces telomerase in both normal human mammary epithelial cells (HMECs) and normal human diploid fibroblasts. Myc increases expression of hEST2 (hTRT/TP2), the limiting subunit of telomerase, and both Myc and hEST2 can extend the life span of HMECs. The ability of Myc to activate telomerase may contribute to its ability to promote tumor formation.

Telomerase modulates expression of growth-controlling genes and enhances cell proliferation

Nature Cell Biology, 2003

Most somatic cells do not express sufficient amounts of telomerase to maintain a constant telomere length during cycles of chromosome replication. Consequently, there is a limit to the number of doublings somatic cells can undergo before telomere shortening triggers an irreversible state of cellular senescence 1,2. Ectopic expression of telomerase overcomes this limitation, and in conjunction with specific oncogenes can transform cells to a tumorigenic phenotype 3. However, recent studies have questioned whether the stabilization of chromosome ends entirely explains the ability of telomerase to promote tumorigenesis and have resulted in the hypothesis that telomerase has a second function that also supports cell division 4-11. Here we show that ectopic expression of telomerase in human mammary epithelial cells (HMECs) results in a diminished requirement for exogenous mitogens and that this correlates with telomerase-dependent induction of genes that promote cell growth. Furthermore, we show that inhibiting expression of one of these genes, the epidermal growth factor receptor (EGFR), reverses the enhanced proliferation caused by telomerase. We conclude that telomerase may affect proliferation of epithelial cells not only by stabilizing telomeres, but also by affecting the expression of growth-promoting genes.

Telomerase activity in human breast tumors

Journal of the National Cancer Institute, 1996

The activity of the ribonucleoprotein enzyme telomerase is not detected in normal somatic cells; thus, with each cell division, the ends of chromosomes consisting of the telomeric repeats TTAGGG progressively erode. The current model gaining support is that telomerase activity in germline and immortal cells maintains telomere length and thus compensates for the "end-replication problem." Our objective was to determine when telomerase activity is reactivated in the progression to malignant breast cancer and if knowledge of telomerase activity may be an indicator for the diagnosis and potential treatment of breast cancer. Using a polymerase chain reaction-based telomerase activity assay, we examined telomerase activity in 140 breast cancer specimens (from 140 patients), four phyllodes tumors (from four patients), 38 noncancerous lesions (20 fibroadenomas, 17 fibrocystic diseases, one gynecomastia; from 38 patients), and 55 adjacent noncancerous mammary tissues (from 55 of th...

The alternative lengthening of telomeres phenotype in breast carcinoma is associated with HER-2 overexpression

Modern Pathology, 2009

Approximately 10-15% of human cancers do not show evidence of telomerase activity, and a subset of these maintain telomere lengths by a recombination-based mechanism termed alternative lengthening of telomeres (ALT). The ALT phenotype, relatively common in certain sarcomas and germ cell tumors, is very rare in carcinomas. In this study we describe evidence for the ALT phenotype in molecular subclasses of breast carcinoma, specifically a subset of cancers with HER-2 overexpression. Tissue microarrays were created from 71 invasive ductal carcinomas of the breast categorized into subclasses, and telomere lengths were directly assessed using fluorescence in situ hybridization with combined promyelocytic leukemia (PML) protein immunofluorescence. The ALT phenotype was identified in 3 of 21 HER-2-positive cases, but in none of the other 50 cases (P ΒΌ 0.023). This is the first direct observation of this mechanism of telomere maintenance in breast carcinoma unrelated to Li-Fraumeni syndrome. The correlation of the ALT phenotype with HER-2 positivity, both of which involve abnormal DNA amplification, suggests a possible common underlying mechanism. This telomere phenotype confers a poor prognosis in some cancers; two of the three cases in our study showed rapid tumor progression, possibly suggesting that it may adversely affect outcome in breast carcinoma as well. As cancers using the ALT pathway are predicted to be resistant to therapies based on telomerase inhibition, these results may have therapeutic consequences.

TGF-beta receptor mediated telomerase inhibition, telomere shortening and breast cancer cell senescence

Protein & Cell, 2016

Human telomerase reverse transcriptase (hTERT) plays a central role in telomere lengthening for continuous cell proliferation, but it remains unclear how extracellular cues regulate telomerase lengthening of telomeres. Here we report that the cytokine bone morphogenetic protein-7 (BMP7) induces the hTERT gene repression in a BMPRII receptor-and Smad3-dependent manner in human breast cancer cells. Chonic exposure of human breast cancer cells to BMP7 results in short telomeres, cell senescence and apoptosis. Mutation of the BMPRII receptor, but not TGFbRII, ACTRIIA or ACTRIIB receptor, inhibits BMP7-induced repression of the hTERT gene promoter activity, leading to increased telomerase activity, lengthened telomeres and continued cell proliferation. Expression of hTERT prevents BMP7-induced breast cancer cell senescence and apoptosis. Thus, our data suggest that BMP7 induces breast cancer cell aging by a mechanism involving BMPRII receptor-and Smad3-mediated repression of the hTERT gene.