Recurrently deregulated lncRNAs associated with HCC tumorigenesis and metastasis revealed by genomic, epigenomic, and transcriptomic profiling in paired primary tumor and PVTT samples (original) (raw)

Recurrently deregulated lncRNAs in hepatocellular carcinoma

Nature Communications, 2017

Hepatocellular carcinoma (HCC) cells often invade the portal venous system and subsequently develop into portal vein tumour thrombosis (PVTT). Long noncoding RNAs (lncRNAs) have been associated with HCC, but a comprehensive analysis of their specific association with HCC metastasis has not been conducted. Here, by analysing 60 clinical samples' RNA-seq data from 20 HCC patients, we have identified and characterized 8,603 candidate lncRNAs. The expression patterns of 917 recurrently deregulated lncRNAs are correlated with clinical data in a TCGA cohort and published liver cancer data. Matched array data from the 60 samples show that copy number variations (CNVs) and alterations in DNA methylation contribute to the observed recurrent deregulation of 235 lncRNAs. Many recurrently deregulated lncRNAs are enriched in co-expressed clusters of genes related to cell adhesion, immune response and metabolic processes. Candidate lncRNAs related to metastasis, such as HAND2-AS1, were further validated using RNAi-based loss-of-function assays. Thus, we provide a valuable resource of functional lncRNAs and biomarkers associated with HCC tumorigenesis and metastasis.

Identification of novel long non-coding RNAs deregulated in hepatocellular carcinoma using RNA-sequencing

Oncotarget, 2016

Functional characterization of long non-coding RNAs (lncRNAs) and their pathological relevance is still a challenging task. Abnormal expression of a few long non-coding RNAs have been found associated with hepatocellular carcinoma, with potential implications to both improve our understanding of molecular mechanism of liver carcinogenesis and to discover biomarkers for early diagnosis or therapy. However, the understanding of the global role of lncRNAs during HCC development is still in its infancy. In this study, we produced RNA-Seq data from 23 liver tissues (controls, cirrhotic and HCCs) and applied statistical and gene network analysis approaches to identify and characterize expressed lncRNAs. We detected 5,525 lncRNAs across different tissue types and identified 57 differentially expressed lncRNAs in HCC compared with adjacent non-tumour tissues using stringent criteria (FDR<0.05, Fold Change>2). Using weighted gene co-expression network analysis (WGCNA), we found that di...

Network of clinically-relevant lncRNAs-mRNAs associated with prognosis of hepatocellular carcinoma patients

Scientific Reports, 2020

Long non-coding RNAs (lncRNAs) are often aberrantly expressed in Hepatocellular Carcinoma (HCC). We hypothesize that lncRNAs modulate HCC prognoses through differential deregulation of key lncRNAs affecting important gene network in key cancer pathways associated with pertinent clinical phenotype. Here, we present a novel approach integrating lncRNA-mRNA expression profiles with clinical characteristics to identify lncRNA signatures in clinically-relevant co-expression lncRNA-mRNA networks residing in pertinent cancer pathways. Notably one network, associated with poorer prognosis, comprises five up-regulated lncRNAs significantly correlated (|Pearson Correlation Coefficient|≥ 0.9) with 91 up-regulated genes in the cell-cycle and Rho-GTPase pathways. All 5 lncRNAs and 85/91 (93.4%) of the correlated genes were significantly associated with higher tumor-grade while 3/5 lncRNAs were also associated with no tumor capsule. Interestingly, 2/5 lncRNAs that are correlated with numerous gen...

The Landscape of lncRNAs in Hepatocellular Carcinoma: A Translational Perspective

Cancers, 2021

LncRNAs are emerging as relevant regulators of multiple cellular processes involved in cell physiology as well as in the development and progression of human diseases, most notably, cancer. Hepatocellular carcinoma (HCC) is a prominent cause of cancer-related death worldwide due to the high prevalence of causative factors, usual cirrhotic status of the tumor-harboring livers and the suboptimal benefit of locoregional and systemic therapies. Despite huge progress in the molecular characterization of HCC, no oncogenic loop addiction has been identified and most genetic alterations remain non-druggable, underscoring the importance of advancing research in novel approaches for HCC treatment. In this context, long non-coding RNAs (lncRNAs) appear as potentially useful targets as they often exhibit high tumor- and tissue-specific expression and many studies have reported an outstanding dysregulation of lncRNAs in HCC. However, there is a limited perspective of the potential role that dere...

Current Research Progress on Long Noncoding RNAs Associated with Hepatocellular Carcinoma

Analytical Cellular Pathology, 2019

Hepatocellular carcinoma (HCC) is the second leading cause of mortality among cancers. It has been found that long noncoding RNAs (lncRNAs) are involved in many human cancers, including liver cancer. It has been identified that carcinogenic and tumor-suppressing lncRNAs are associated with complex processes in liver cancer. These lncRNAs may participate in a variety of pathological and biological activities, such as cell proliferation, apoptosis, invasion, and metastasis. Here, we review the regulation and function of lncRNA in liver cancer and evaluate the potential of lncRNA as a new goal for liver cancer.

Exploration of Deregulated Long Non-Coding RNAs in Association with Hepatocarcinogenesis and Survival

Cancers, 2015

Long non-coding RNAs (lncRNAs) are larger than 200 nucleotides in length and pervasively expressed across the genome. An increasing number of studies indicate that lncRNA transcripts play integral regulatory roles in cellular growth, division, differentiation and apoptosis. Deregulated lncRNAs have been observed in a variety of human cancers, including hepatocellular carcinoma (HCC). We determined the expression profiles of 90 lncRNAs for 65 paired HCC tumor and adjacent non-tumor tissues, and 55 lncRNAs were expressed in over 90% of samples. Eight lncRNAs were significantly down-regulated in HCC tumor compared to non-tumor tissues (p < 0.05), but no lncRNA achieved statistical significance after Bonferroni correction for multiple comparisons. Within tumor tissues, carrying more aberrant lncRNAs (6-7) was associated with a borderline significant reduction Cancers 2015, 7 1848 in survival (HR = 8.5, 95% CI: 1.0-72.5). The predictive accuracy depicted by the AUC was 0.93 for HCC su...

Highly deregulated lncRNA LOC is associated with overall worse prognosis in Hepatocellular Carcinoma patients

Journal of Cancer

Although numerous long non-coding RNAs (lncRNAs) were reported to be deregulated in Hepatocellular Carcinoma (HCC), experimentally characterized, and/or associated with patient's clinical characteristics, there is, thus far, minimal concerted research strategy to identify deregulated lncRNAs that modulate prognosis of HCC patients. Here, we present a novel strategy where we identify lncRNAs, which are not only de-regulated in HCC patients, but are also associated with pertinent clinical characteristics, potentially contributing to the prognosis of HCC patients. LOC101926913 (LOC) was further characterized because it is the most highly differentially expressed amongst those that are associated with the most number of clinical features (tumor-stage, vascular and tumor invasion and poorer overall survival). Experimental gain-and loss-of-function manipulation of LOC in liver cell-lines highlight LOC as a potential onco-lncRNA promoting cell proliferation, anchorage independent growth and invasion. LOC expression in cells up-regulated genes involved in GTPase-activities and downregulated genes associated with cellular detoxification, oxygen-and drug-transport. Hence, LOC may represent a novel therapeutic target, modulating prognosis of HCC patients through up-regulating GTPase-activities and down-regulating detoxification, oxygen-and drug-transport. This strategy may thus be useful for the identification of clinically relevant lncRNAs as potential biomarkers/targets that modulate prognosis in other cancers as well.

The Role of Long Non-Coding RNAs in Hepatocarcinogenesis

International Journal of Molecular Sciences

Whole-transcriptome analyses have revealed that a large proportion of the human genome is transcribed in non-protein-coding transcripts, designated as long non-coding RNAs (lncRNAs). Rather than being "transcriptional noise", increasing evidence indicates that lncRNAs are key players in the regulation of many biological processes, including transcription, post-translational modification and inhibition and chromatin remodeling. Indeed, lncRNAs are widely dysregulated in human cancers, including hepatocellular carcinoma (HCC). Functional studies are beginning to provide insights into the role of oncogenic and tumor suppressive lncRNAs in the regulation of cell proliferation and motility, as well as oncogenic and metastatic potential in HCC. A better understanding of the molecular mechanisms and the complex network of interactions in which lncRNAs are involved could reveal novel diagnostic and prognostic biomarkers. Crucially, it may provide novel therapeutic opportunities to add to the currently limited number of therapeutic options for HCC patients. In this review, we summarize the current status of the field, with a focus on the best characterized dysregulated lncRNAs in HCC.

Analysis of the Cancer Genome Atlas Data Reveals Novel Putative ncRNAs Targets in Hepatocellular Carcinoma

BioMed Research International

Hepatocellular carcinoma (HCC) is the prevalent type of primary liver malignancy. Different noncoding RNAs (ncRNAs) that negatively regulate gene expression, such as the microRNAs and the long ncRNAs (lncRNAs), have been associated with cell invasiveness and cell dissemination, tumor recurrence, and metastasis in HCC. To evaluate which regulatory ncRNAs might be good candidates to disrupt HCC proliferation pathways, we performed both unsupervised and supervised analyses of HCC expression data, comparing samples of solid tumor tissue (TP) and adjacent tissue (NT) of a set of patients, focusing on ncRNAs and searching for common mechanisms that may shed light in future therapeutic options. All analyses were performed using the R software. Differential expression (total RNA and miRNA) and enrichment analyses (Gene Ontology + Pathways) were performed using the package TCGABiolinks. As a result, we improved the set of lncRNAs that could be the target of future studies in HCC, highlightin...

Behind the curtain of non-coding RNAs; long non-coding RNAs regulating hepatocarcinogenesis

World Journal of Gastroenterology

Hepatocellular carcinoma (HCC) is one of the most common and aggressive cancers worldwide. HCC is the fifth common malignancy in the world and the second leading cause of cancer death in Asia. Long non-coding RNAs (lncRNAs) are RNAs with a length greater than 200 nucleotides that do not encode proteins. lncRNAs can regulate gene expression and protein synthesis in several ways by interacting with DNA, RNA and proteins in a sequence specific manner. They could regulate cellular and developmental processes through either gene inhibition or gene activation. Many studies have shown that dysregulation of lncRNAs is related to many human diseases such as cardiovascular diseases, genetic disorders, neurological diseases, immune mediated disorders and cancers. However, the study of lncRNAs is challenging as they are poorly conserved between species, their expression levels aren't as high as that of mRNAs and have great interpatient variations. The study of lncRNAs expression in cancers have been a breakthrough as it unveils potential biomarkers and drug targets for cancer therapy and helps understand the mechanism of pathogenesis. This review discusses many long non-coding RNAs and their contribution in HCC, their role in development, metastasis, and prognosis of HCC and how to regulate and target these lncRNAs as a therapeutic tool in HCC treatment in the future.