The Rab family of proteins: 25 years on (original) (raw)
Related papers
Rab proteins: The key regulators of intracellular vesicle transport
Experimental Cell Research, 2014
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes.
Rab proteins and endocytic trafficking: potential targets for therapeutic intervention
Advanced Drug Delivery Reviews, 2003
Rab GTPases serve as master regulators of vesicular membrane transport on both the exo-and endocytic pathways. In their active forms, rab proteins serve in cargo selection and as scaffolds for the sequential assembly of effectors requisite for vesicle budding, cytoskeletal transport, and target membrane fusion. Rab protein function is in turn tightly regulated at the level of protein expression, localization, membrane association, and activation. Alterations in the rab GTPases and associated regulatory proteins or effectors have increasingly been implicated in causing human disease. Some diseases such as those resulting in bleeding and pigmentation disorders (Griscelli syndrome), mental retardation, neuropathy (Charcot -Marie -Tooth), kidney disease (tuberous sclerosis), and blindness (choroideremia) arise from direct loss of function mutations of rab GTPases or associated regulatory molecules. In contrast, in a number of cancers (prostate, liver, breast) as well as vascular, lung, and thyroid diseases, the overexpression of select rab GTPases have been tightly correlated with disease pathogenesis. Unique therapeutic opportunities lie ahead in developing strategies that target rab proteins and modulate the endocytic pathway. D
Cellular functions of Rab GTPases at a glance
Journal of cell science, 2015
Rab GTPases control intracellular membrane traffic by recruiting specific effector proteins to restricted membranes in a GTP-dependent manner. In this Cell Science at a Glance and the accompanying poster, we highlight the regulation of Rab GTPases by proteins that control their membrane association and activation state, and provide an overview of the cellular processes that are regulated by Rab GTPases and their effectors, including protein sorting, vesicle motility and vesicle tethering. We also discuss the physiological importance of Rab GTPases and provide examples of diseases caused by their dysfunctions.
Rabs and their effectors: Achieving specificity in membrane traffic
Proceedings of the National Academy of Sciences, 2006
Rab proteins constitute the largest branch of the Ras GTPase superfamily. Rabs use the guanine nucleotide-dependent switch mechanism common to the superfamily to regulate each of the four major steps in membrane traffic: vesicle budding, vesicle delivery, vesicle tethering, and fusion of the vesicle membrane with that of the target compartment. These different tasks are carried out by a diverse collection of effector molecules that bind to specific Rabs in their GTP-bound state. Recent advances have not only greatly extended the number of known Rab effectors, but have also begun to define the mechanisms underlying their distinct functions. By binding to the guanine nucleotide exchange proteins that activate the Rabs certain effectors act to establish positive feedback loops that help to define and maintain tightly localized domains of activated Rab proteins, which then serve to recruit other effector molecules. Additionally, Rab cascades and Rab conversions appear to confer directio...
Regulation of Receptor Trafficking by Rab GTPases
2003
Human cells contain more than 60 Ras-like, Rab GTPases that are localized to the surfaces of distinct membrane-bound compartments. Rabs are master regulators of membrane traffic events: they can catalyze the formation of membrane microdomains, the collection of cargo into transport vesicles, the motility of vesicles along cytoskeletal tracks, the docking of vesicles with their targets, and the subsequent membrane fusion process. Rab protein function has broad implication for our understanding of human disease. For example, mutations in Rab27 lead to Griscelli syndrome due to defects in melanosome transport in melanocytes and loss of cytotoxic killing activity in T cells. Other genetic diseases are caused by loss of function of multiple Rab proteins due to mutations in common Rab regulators. My laboratory studies the Rab9 GTPase that is essential for transport of mannose 6-phosphate receptors between late endosomes and the Golgi complex. Rab9 forms a distinct domain in late endosome ...
Journal of Biological Chemistry
Rab proteins occur in the cytosol bound to Rab-GDP dissociation inhibitor (GDI). We demonstrate here that cytosolic complexes of Rab9 bound to GDI represent a functional pool of Rab9 protein that can be utilized for transport from late endosomes to the trans Golgi network in vitro. Immunodepletion of GDI and Rab proteins bound to GDI led to the loss of cytosol activity; readdition of pure Rab9-GDI complexes fully restored cytosol activity. Delipidated serum albumin could solubilize prenylated Rab9 protein, but unlike Rab9-GDI complexes, Rab9-serum albumin complexes led to indiscriminate membrane association of Rab9 protein. Rab9 delivered to membranes by serum albumin was functional, but GDI increased the efficiency of Rab9 utilization, presumably because it suppressed Rab9 protein mistargeting. Finally, GDI inhibited transport of proteins from late endosomes to the trans Golgi network, likely because of its capacity to inhibit the membrane recruitment of cytosolic Rab9. These experiments show that GDI contributes to the selectivity of Rab9 membrane recruitment and presents functional Rab9 to the endosome-trans Golgi network transport machinery.
Rab GTPases: Switching to Human Diseases
Cells, 2019
Rab proteins compose the largest family of small GTPases and control the different steps of intracellular membrane traffic. More recently, they have been shown to also regulate cell signaling, division, survival, and migration. The regulation of these processes generally occurs through recruitment of effectors and regulatory proteins, which control the association of Rab proteins to membranes and their activation state. Alterations in Rab proteins and their effectors are associated with multiple human diseases, including neurodegeneration, cancer, and infections. This review provides an overview of how the dysregulation of Rab-mediated functions and membrane trafficking contributes to these disorders. Understanding the altered dynamics of Rabs and intracellular transport defects might thus shed new light on potential therapeutic strategies.
Targeting of Rab GTPases to Cellular Membranes
Biochemical Society Transactions, 2005
Rab proteins are members of the superfamily of Ras-like small GTPases and are involved in several cellular processes relating to membrane trafficking and organelle mobility throughout the cell. Like other small GTPases, Rab proteins are initially synthesized as soluble proteins and for membrane attachment they require the addition of lipid moiety(ies) to specific residues of their polypeptide chain. Despite their welldocumented roles in regulating cellular trafficking, Rab proteins own trafficking is still poorly understood. We still need to elucidate the molecular mechanisms of their recruitment to cellular membranes and the structural determinants for their specific cellular localization. Recent results indicate that Rab cellular targeting might be Rab-dependent, and this paper briefly reviews our current knowledge of this process.