Comparison of the Effect of Adipose Mesenchymal Stem Cells-derived Secretome with and without Reovirus in CT26 Cells (original) (raw)
Related papers
Biomedicines, 2021
Although oncolytic viruses are currently being evaluated for cancer treatment in clinical trials, systemic administration is hindered by many factors that prevent them from reaching the tumor cells. When administered systemically, mesenchymal stem cells (MSCs) target tumors, and therefore constitute good cell carriers for oncolytic viruses. MSCs were primed with trichostatin A under hypoxia, which upregulated the expression of CXCR4, a chemokine receptor involved in tumor tropism, and coxsackievirus and adenovirus receptor that plays an important role in adenoviral infection. After priming, MSCs were loaded with conditionally replicative adenovirus that exhibits limited proliferation in cells with a functional p53 pathway and encodes Escherichia coli nitroreductase (NTR) enzymes (CRAdNTR) for targeting tumor cells. Primed MSCs increased tumor tropism and susceptibility to adenoviral infection, and successfully protected CRAdNTR from neutralization by anti-adenovirus antibodies both ...
The Effects of Mesenchymal Stem Cell on Colorectal Cancer
Stem Cells International
Colorectal cancer (CRC) is a common malignant tumor of the gastrointestinal tract with nonobvious early symptoms and late symptoms of anemia, weight loss, and other systemic symptoms. Its morbidity and fatality rate are next only to gastric cancer, esophageal cancer, and primary liver cancer among digestive malignancies. In addition to the conventional surgical intervention, other therapies such as radiotherapy and chemotherapy and new treatment methods such as biologics and microbiological products have been introduced. As a promising cell therapy, mesenchymal stem cell (MSC) has attracted extensive research attention. MSCs are early undifferentiated pluripotent stem cells, which have the common features of stem cells, including self-replication, self-division, self-renewal, and multidirectional differentiation. MSCs come from a wide range of sources and can be extracted from a variety of tissues such as the bone marrow, umbilical cord, and fat. Current studies have shown that MSCs...
World Journal of Stem Cells, 2020
BACKGROUND Recently, the exclusive use of mesenchymal stem cell (MSC)-secreted molecules, named as the secretome, have been evaluated for overcoming the limitations of cell-based therapy while maintaining its advantages. AIM To improve cell-free therapy by adding disease-specificity through stimulation of MSCs using disease-causing materials. METHODS We collected the secretory materials (named as inducers) released from AML12 hepatocytes that had been pretreated with thioacetamide (TAA) and generated the TAA-induced secretome (TAA-isecretome) after stimulating adipose-derived stem cells with the inducers. The TAA-isecretome was intravenously administered to mice with TAA-induced hepatic failure and those with partial hepatectomy.
The in vitro Treatment of Mesenchymal Stem Cells for Colorectal Cancer Cells
Colorectal cancer is the most common tumor of the gastrointestinal system. The conventional treatment options of colorectal cancer are troublesome for both patients and clinicians. Recently, mesenchymal stem cells (MSCs) have been the novel focus for cell therapy due to its migration to tumor sites. In this study, the apoptotic effect of MSCs on colorectal cancer cell lines has been aimed. HCT-116 and HT-29 were selected as the colorectal cancer cell lines. Human umbilical cord blood and Wharton’s jelly were used as mesenchymal stem cell sources. To discriminate against the apoptotic effect of MSC on cancer, we also used peripheral blood mononuclear cells (PBMC) as a healthy control group. Cord blood-MSC and PBMC were obtained by ficoll-paque density gradient, and Wharton’s jelly-MSC by explant method. Transwell co-culture systems were used as cancer cells or PBMC/MSCs at ratios of 1/5 and 1/10, incubation times of 24 hours and 72 hours. The Annexin V/PI-FITC based apoptosis assay w...
Human Gene Therapy, 2007
Here we investigated the capacity of capsid-modified adenoviruses to infect and replicate in MSCs. Further, biodistribution and tumor-killing efficacy of MSCs loaded with oncolytic adenoviruses were evaluated in orthotopic murine models of lung and breast cancer. In vitro, heparan sulfate proteoglycan-and ␣ v  integrin-targeted viruses enhanced gene delivery to bone marrow-and adipose tissue-derived MSCs up to 11,000-fold over adenovirus serotype 5 (Ad5). Infectivity-enhanced oncolytic adenoviruses showed notably higher rates of cytolysis of in vitro-passaged MSCs in comparison with wild-type virus. In vivo, intravenously injected MSCs homed primarily to the lungs, and virus was released into advanced orthotopic breast and lung tumors for therapeutic efficacy and increased survival. When the same dose of virus was injected intravenously without MSCs, only transduction of the liver was seen. These results suggest that MSCs loaded with oncolytic adenoviruses might be a useful approach for improving the bioavailability of systemically administered oncolytic adenoviruses.
Research Results in Pharmacology
Mesenchymal stem (stromal) cells (MSCs) are self-renewing, cultured adult stem cells which secrete a complex set of multiple soluble biologically active molecules such as chemokines, and cytokines, cell adhesion molecules, lipid mediators, interleukins (IL), growth factors (GFs), hormones, micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), messenger RNAs (mRNAs), exosomes, as well as microvesicles, the secretome. MSCs of various origin, including adipose-derived stem cells (ASCs), bone marrow derived mesenchymal stem cells (BM-MSCs), human uterine cervical stem cells (hUCESCs), may be good candidates for obtaining secretome-derived products. Different population of MSCs can secret different factors which could have anti-inflammatory, anti-apoptotic, anti-fibrotic activities, a neuroprotective effect, could improve bone, muscle, liver regeneration and wound healing. Therefore, the paracrine activity of conditioned medium obtained when cultivating MSCs, due to a plethora of bioactiv...
Journal of Cellular and Molecular Medicine, 2010
Colorectal carcinoma (CRC) constitutes a common malignancy with limited therapeutic options in metastasized stages. Mesenchymal stem cells (MSC) home to tumours and may therefore serve as a novel therapeutic tool for intratumoral delivery of antineoplastic factors. Tumour necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) which promises apoptosis induction preferentially in tumour cells represents such a factor. We generated TRAIL-MSC by transduction of human MSC with a third generation lentiviral vector system and analysed their characteristics and capacity to inhibit CRC growth. (1) TRAIL-MSC showed stable transgene expression with neither changes in the defining MSC characteristics nor signs of malignant transformation. (2) Upon direct in vitro coculture TRAIL-MSC induced apoptosis in TRAIL-sensitive CRC-cell lines (DLD-1 and HCT-15) but also in CRC-cell lines resistant to soluble TRAIL (HCT-8 and SW480). (3) In mixed subcutaneous (s.c.) xenografts TRAIL-MSC inhibited CRC-tumour growth presumably by apoptosis induction but a substantial proportion of TRAIL-MSC within the total tumour cell number was needed to yield such anti-tumour effect. (4) Systemic application of TRAIL-MSC had no effect on the growth of s.c. DLD-1 xenografts which appeared to be due to a pulmonary entrapment and low rate of tumour integration of TRAIL-MSC. Systemic TRAIL-MSC caused no toxicity in this model. (5) Wild-type MSC seemed to exert a tumour growth-supporting effect in mixed s.c. DLD-1 xenografts. These novel results support the idea that lentiviral TRAILtransgenic human MSC may serve as vehicles for clinical tumour therapy but also highlight the need for further investigations to improve tumour integration of transgenic MSC and to clarify a potential tumour-supporting effect by MSC.
Oncotarget, 2017
Oncolytic virotherapy represents a promising alternative for cancer treatment; however, viral delivery to the tumor represents a major challenge. Mesenchymal stem cells (MSCs) chemotax to tumors, and can serve as a viral delivery tool. Previously, we demonstrated antitumor therapeutic efficacy for mesenchymal stem cells (MSCs) infected with the oncolytic human adenovirus ICOVIR5 (Celyvir) for treatment of neuroblastoma patients. Given the lack of suitable immunocompetent preclinical models, the mechanism underlying Celyvir antitumor activity remains unknown. In this study, we used the syngeneic murine CMT64 cell line as a human adenovirus-semi-permissive tumor model and demonstrate the homing capacity of mouse Celyvir (mCelyvir) to CMT64 tumors. We found that the combined treatment of mCelyvir and intratumoral injections (i.t.) of ICOVIR5 was more effective than treatment with i.t. ICOVIR5 alone. Interestingly, the superior therapeutic effect of the combined therapy was associated w...
Oncotarget, 2014
Evidences indicate that tumor development and progression towards a malignant phenotype depend not only on cancer cells themselves, but are also deeply influenced by tumor stroma reactivity. The present study uses mesenchymal stem cells from normal human uterine cervix (hUCESCs), isolated by the minimally invasive method of routine Pap cervical smear, to study their effect on the three main cell types in a tumor: cancer cells, fibroblasts and macrophages. Administration of hUCESCs-conditioned medium (CM) to a highly invasive breast cancer MDA-MB-231 cell line and to human breast tumors with high cell proliferation rates had the effect of reducing cell proliferation, modifying the cell cycle, inducing apoptosis, and decreasing invasion. In a xenograft mouse tumor model, hUCESCs-CM reduced tumor growth and increased overall survival. In cancer-associated fibroblasts, administration of hUCESCs-CM resulted in reduced cell proliferation, greater apoptosis and decreased invasion. In addit...
STEM CELLS Translational Medicine
We here determine the influence of mesenchymal stem cell (MSC) therapy on the progression of solid tumors. The influence of MSCs was investigated in human colorectal cancer cells as well as in an immunocompetent rat model of colorectal carcinogenesis representative of the human pathology. Treatment with bone marrow (BM)-derived MSCs significantly reduced both cancer initiation and cancer progression by increasing the number of tumor-free animals as well as decreasing the number and the size of the tumors by half, thereby extending their lifespan. The attenuation of cancer progression was mediated by the capacity of the MSCs to modulate the immune component. Specifically, in the adenocarcinomas (ADKs) of MSC-treated rats, the infiltration of CD68+ monocytes/macrophages was 50% less while the presence of CD3+ lymphocytes increased almost twofold. The MSCs reprogrammed the macrophages to become regulatory cells involved in phagocytosis thereby inhibiting the production of proinflammatory cytokines. Furthermore, the MSCs decreased NK (Natural Killer) and rTh17 cell activities, Treg recruitment, the presence of CD8+ lymphocytes and endothelial cells while restoring Th17 cell activity. The expression of miR-150 and miR-7 increased up to fivefold indicating a likely role for these miRNAs in the modulation of tumor growth. Importantly, MSC administration limited the damage of healthy tissues and attenuated tumor growth following radiotherapy. Taken together, we here show that that MSCs have durable action on colon cancer development by modulating the immune component of the tumor microenvironment. In addition, we identify two miRNAs associated with the capacity of MSCs to attenuate cancer growth. STEM CELLS TRANSLATIONAL MEDICINE 2018;00:1-16 SIGNIFICANCE STATEMENT Radiotherapy can be accompanied by substantial normal tissue damage. Although mesenchymal stem cells (MSCs) have been used to alleviate radiation damage, uncertainty remains regarding their potential to support growth of residual tumor cells. Administration of MSCs attenuates colorectal cancer progression in immunocompetent animals in the absence or presence of radiotherapy as shown here. Although only transiently present in the colon tissue of treated animals, exogenous MSCs were able to modify the immune profile of the tumor microenvironment even 1 year after the last MSC administration, most likely due to polarization of resident MSCs and immune cells. These results suggest that administration of MSCs may be a safe and innovative therapeutic option to heal normal tissue following cancer radiotherapy.