Modulation of cell wall synthesis by DNA replication in Escherichia coli during initiation of cell growth (original) (raw)

Cell Size and the Initiation of DNA Replication in Bacteria

PLoS Genetics, 2012

In eukaryotes, DNA replication is coupled to the cell cycle through the actions of cyclin-dependent kinases and associated factors. In bacteria, the prevailing view, based primarily from work in Escherichia coli, is that growth-dependent accumulation of the highly conserved initiator, DnaA, triggers initiation. However, the timing of initiation is unchanged in Bacillus subtilis mutants that are ,30% smaller than wild-type cells, indicating that achievement of a particular cell size is not obligatory for initiation. Prompted by this finding, we re-examined the link between cell size and initiation in both E. coli and B. subtilis. Although changes in DNA replication have been shown to alter both E. coli and B. subtilis cell size, the converse (the effect of cell size on DNA replication) has not been explored. Here, we report that the mechanisms responsible for coordinating DNA replication with cell size vary between these two model organisms. In contrast to B. subtilis, small E. coli mutants delayed replication initiation until they achieved the size at which wild-type cells initiate. Modest increases in DnaA alleviated the delay, supporting the view that growth-dependent accumulation of DnaA is the trigger for replication initiation in E. coli. Significantly, although small E. coli and B. subtilis cells both maintained wild-type concentration of DnaA, only the E. coli mutants failed to initiate on time. Thus, rather than the concentration, the total amount of DnaA appears to be more important for initiation timing in E. coli. The difference in behavior of the two bacteria appears to lie in the mechanisms that control the activity of DnaA.

Physiological and geometrical conditions for cell division in Escherichia coli

Annales de l'Institut Pasteur. Microbiologie

During recovery of division in filaments of a temperature-sensitive DNA replication mutant, DNA-less cells were formed with a broad variation in cell lengths. It is argued that segregated nucleoids are necessary to indicate the site of division and that, in their absence, the cell has no additional mechanism to locate the division site. A second condition for division is based on geometrical arguments: the cell must be able to reestablish its original surface to volume ratio or its diameter, either of which may decrease during elongation. Electron microscopy and auto-radiography of radio-labelled sacculi prepared from E. coli MC4100 lysA, cultured in glucose minimal medium, showed that these cells elongate at a constant diameter and double their rate of surface synthesis during the constriction period.

Transient enhanced cell division by blocking DNA synthesis in Escherichia coli

Microbiology, 2020

Duplication of the bacterial nucleoid is necessary for cell division hence specific arrest of DNA replication inhibits divisions culminating in filamentation, nucleoid dispersion and appearance of a-nucleated cells. It is demonstrated here that during the first 10 min however, Escherichia coli enhanced residual divisions: the proportion of constricted cells doubled (to 40%), nucleoids contracted and cells remodelled dimensions: length decreased and width increased. The preliminary data provides further support to the existence of temporal and spatial couplings between the nucleoid/replisome and the sacculus/divisome, and is consistent with the idea that bacillary bacteria modulate width during the division process exclusively.

Initiation of DNA replication in Escherichia coli

MGG Molecular & General Genetics, 1974

When E. coli F+ cells carrying the dna-167 or dnaC2 mutation, which causes the temperature-sensitive initiation of DNA replication, are exposed to a non-permissive temperature to stop the replication of chromosome and F factor, and then transferred back to a permissive temperature with the addition of chloramphenicol, one round of the chromosomal replication occurs, but further replication is inhibited. Under these conditions, F DNA replicates coincidentally with the initiation of the chromosomal replication in both strains. When rifampicin is added to the cells upon lowering of the temperature, the chromosome can not replicate in the F+ dna-167 strain, but can do so in the F+ dnaC2 strain. F DNA can replicate in both of the mutant strains under these conditions.

Division-inhibition capacity of penicillin in Escherichia coli is growth-rate dependent

Microbiology, 1995

Growing bacteria are sensitive to various blactam derivatives due to their interference with peptidoglycan biosynthesis. At low concentrations, penicillin G (benzylpenicillin) blocks cell division without affecting mass growth rate. The MIC for division of Escherichia COIi Wr (H266) was found to depend on the growth rate, which was modified by the nutritional conditions. Our hypothesis, that division sensitivity is proportional to the rate of peptidoglycan synthesis for septum formation, as well as to cell circumference, was thus confirmed.

Volume growth, murein synthesis, and murein cross-linkage during the division cycle of Escherichia coli PA3092

Journal of Bacteriology, 1982

Cells of Escherichia coli PA3092 were synchronized by centrifugal elutriation. The synchronously growing cells were double labeled with -3H or DL-[meso-2,6-14C]diaminopimelic acid (DAP) at different times. Cells incorporated [3H]DAP at a continuously increasing rate during their cycle, with a maximum occurring at about 30 min before division for trichloroacetic acid-precipitated cells (whole cells) and about 10 min before division for sodium dodecyl sulfate-treated cells (sacculi). This was in good agreement with the observed kinetics of volume growth under these conditions. Furazlocillin, which preferentially interacts with penicillin-binding protein 3, modified the pattern of incorporation of [3H]DAP. Electron microscopy indicated that furazlocillin did not inhibit the initiation of division but rather its completion. In addition, we measured the cross-linking of the murein inserted at different times during synchronous growth. The highest percentages were found to occur around di...

A model for the initiation of replication in Escherichia coli

Journal of Theoretical Biology, 1989

The role of the protein DnaA as the principal control of replication initiation is investigated by a mathematical model. Data showing that DnaA is growth rate regulated suggest that its concentration alone is not the only factor determining the timing of initiation. A mathematical model with stochastic and deterministic components is constructed from known experimental evidence and subdivides the total pool of DnaA protein into four forms. The active form, DnaA • ATP, can be bound to the origin of replication, oriC, where it is assumed that a critical level of these bound molecules is needed to initiate replication. The active form can also exist in a reserve pool bound to the chromosome or a free pool in the cytoplasm. Finally, a large inactive pool of DnaA protein completes the state variables and provides an explanation for how the DnaA. ATP form could be the principal controlling element in the timing of initiation. The fact that DnaA protein is an autorepressor is used to derive its synthesis rate. The model studies a single exponentially growing cell through a series of cell divisions. Computer simulations are performed, and the results compare favorably to data for different cell cycle times. The model shows synchrony of initiation events in agreement with experimental results.

Inhibition of lateral wall elongation by mecillinam stimulates cell division in certain cell division conditional mutants of Escherichia coli

Journal of Bacteriology, 1984

The effect of mecillinam, a 1-lactam antibiotic that specifically binds penicillin-binding protein 2 of Escherichia coli, causes transition from rod to coccal shape, and inhibits cell division in sensitive cells, has been tested on three different E. coli temperature-sensitive cell division mutants. At the nonpermissive temperature, the antibiotic allows an increase in cell number for strains BUG6 and AX655 but not for AX621. In strain AX655, the cell division stimulation was observed only if the antibiotic was added immediately after shifting to the nonpermissive temperature, whereas in BUG6, the rise in cell number was observed also when mecillinam was added after 90 min of incubation at the nonpermissive temperature. In all cases, cell division began occurring 30 min after addition of the antibiotic. Mecillinam had no effect on division of dnaA, dnaB temperature-sensitive mutants or on division of BUG6 derivatives made resistant to this antibiotic. Other ,B-lactam antibiotics such as penicillin, ampicillin, cephalexin, and piperacillin and non P-lactam antibiotics such as fosfomycin, teichomycin, and vancomycin that inhibit cell wall synthesis did not show any effect on cell division for any of the mutants. The response of the three cell division mutants to mecillinam is interpreted in terms of a recently proposed model for shape regulation in bacteria.

Inhibition of an early event in the cell division cycle of Escherichia coli by FL1060, an aminopenicillanic acid

Journal of Bacteriology

Analysis of exponential and synchronous cultures of Escherichia coli B/r after the addition of FL1060 indicates a block point for division by this agent some 15 to 20 min before the end of the preceding cell division cycle, a time corresponding to the beginning of the C period of the cell division cycle. Morphological examination of FL1060-treated synchronous cultures of E. coli B/r was consistent with inhibition by FL1060 of a very early event in the cell division cycle. This event appears to be essential for normal cell surface elongation in a rod configuration. Temporary treatment of synchronous cultures of E. coli B/r with FL1060 resulted in division delay, the extent of which was a function of the duration of exposure to FL1060. However, even after relatively long times of FL1060 treatment the delayed divisions were still synchronous. Although FL1060 had no direct effect on deoxyribonucleic acid (DNA) synthesis, the synchronous delayed divisions occurring after temporary treatment with FL1060 were accompanied by a delay in the attainment of resistance of cell division to inhibitors of DNA, ribonucleic acid, and protein synthesis. These results suggest that an FL1060-sensitive event initiates at the beginning of the C period of the cell division cycle of E. coli and is responsible for normal cell elongation. This cell elongation pathway procedes independently of DNA synthesis, but there is an interaction between this pathway and termination of a round of DNA replication in which a normal rod configuration is necessary to allow a signal for cell division to be generated upon completion of DNA replication.