Single-nozzle Core-shell Electrospun Nanofibers of PVP/Dextran as Drug Delivery System (original) (raw)

Fibers and Polymers

Abstract

Ciprofloxacin-loaded poly(vinylpyrrolidinone) (PVP) and dextran sulfate (Dex) (PVP/Dex) nanofibers were prepared using the emulsion electrospinning method. The physical and morphological characteristics of the prepared nanofibers were evaluated by conducting a Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The polymer-polymer and polymer-drug interactions were determined using differential scanning calorimetry (DSC). Moreover, the formation of the core-shell structure was confirmed by transmission electron microscopy (TEM) and confocal laser microscopy. The sustained release behavior was evaluated using ultraviolet-visible (UV-vis) spectroscopy, and its kinetic mechanism was investigated using Korsmeyer-Peppas, Peppas-Sahlin, and Weibull models by a non-linear regression equation. The antibacterial properties were evaluated using the disc diffusion method with respect to several wound gram-positive (Methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Staphylococcus aureus, and Klebsiella pneumoniae) and gram-negative bacteria (Pseudomonas aeruginosa, Salmonella typhimurium, and Proteus vulgaris). In general, the release behavior of Ciprofloxacin from PVP/Dex is controlled by diffusion in the delivery system.

Meera Moydeen hasn't uploaded this paper.

Let Meera know you want this paper to be uploaded.

Ask for this paper to be uploaded.