Genomic instability after targeted irradiation of human lymphocytes: Evidence for inter-individual differences under bystander conditions (original) (raw)
Related papers
Mutation research, 2004
Over the past two decades, our understanding of radiation biology has undergone a fundamental shift in paradigms away from deterministic "hit-effect" relationships and towards complex ongoing "cellular responses". These responses include now familiar, but still poorly understood, phenomena associated with radiation exposure such as bystander effects, genomic instability, and adaptive responses. All three have been observed at very low doses, and at time points far removed from the initial radiation exposure, and are extremely relevant for linear extrapolation to low doses; the adaptive response is particularly relevant when exposure is spread over a period of time. These are precisely the circumstances that are most relevant to understanding cancer risk associated with environmental and occupational radiation exposures. This review will provide a synthesis of the known, and proposed, interrelationships amongst low-dose cellular responses to radiation. It also wil...
Genomic Instability and Bystander Effect – Implications for Radiation Protection
2004
The main results of the EC project ‘Genomic instability and radiation-induced cancer’ (RADINSTAB) are reviewed and the potential implications of genomic instability and bystander effect for risk assessment and radiation protection discussed. A basic paradigm in radiobiology is that, after exposure to ionising radiation, the deposition of energy in the cell nucleus and the resulting damage to DNA, the primary target, are responsible for the harmful biological effects of radiation. The radiation-induced changes are thought to be fixed already in the first cell division following the radiation exposure and health effects are considered to result as a consequence of clonal proliferation of cells carrying mutations in specific genes. These basic assumptions have recently been challenged by new research findings on radiation-induced genomic instability and bystander effects, which are also called non-targeted effects as it appears that DNA is not the primary target for their induction.
Bystander effects in radiation-induced genomic instability
Mutation research, 2002
Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine...
Are Epigenetic Mechanisms Involved in Radiation-Induced Bystander Effects?
Frontiers in Genetics, 2012
The "non-targeted effects" of ionizing radiation including bystander effects and genomic instability are unique in that no classic mutagenic event occurs in the cell showing the effect. In the case of bystander effects, cells which were not in the field affected by the radiation show high levels of mutations, chromosome aberrations, and membrane signaling changes leading to what is termed "horizontal transmission" of mutations and information which may be damaging while in the case of genomic instability, generations of cells derived from an irradiated progenitor appear normal but then lethal and non-lethal mutations appear in distant progeny. This is known as "vertical transmission." In both situations high yields of non-clonal mutations leading to distant occurrence of mutation events both in space and time. This precludes a mutator phenotype or other conventional explanation and appears to indicate a generalized form of stress-induced mutagenesis which is well documented in bacteria. This review will discuss the phenomenology of what we term "non-targeted effects," and will consider to what extent they challenge conventional ideas in genetics and epigenetics.
Tracking genomic instability within irradiated and bystander populations
Journal of Pharmacy and Pharmacology, 2008
Over the past two decades, our understanding of radiation biology has undergone a fundamental shift in paradigms away from deterministic ‘hit-effect’ relationships and towards complex ongoing ‘cellular responses’. These responses include now familiar, but still poorly understood, phenomena associated with radiation exposure such as genomic instability and bystander effects. Although these responses share some common features (e.g. they occur at high frequency following very low doses, are heterogeneous in their induction and are observed at time points far removed from the initial radiation exposure), the precise relationship between genomic instability and bystander effects remains to be elucidated. This review will provide a synthesis of the known, and proposed, interrelationships among irradiated and bystander cellular responses to radiation. It also discusses our current experimental approach for gaining a clearer understanding of the relationship between damage induction and lo...
Untargeted effects of ionizing radiation: implications for radiation pathology
Mutation research, 2006
The dogma that genetic alterations are restricted to directly irradiated cells has been challenged by observations in which effects of ionizing radiation, characteristically associated with the consequences of energy deposition in the cell nucleus, arise in non-irradiated cells. These, so called, untargeted effects are demonstrated in cells that have received damaging signals produced by irradiated cells (radiation-induced bystander effects) or that are the descendants of irradiated cells (radiation-induced genomic instability). Radiation-induced genomic instability is characterized by a number of delayed adverse responses including chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. Whilst the majority of studies to date have used in vitro systems, some adverse non-targeted effects have been demonstrated in vivo. However, at least for haemopoietic tissues, r...
Bystander effects, adaptive response and genomic instability induced by prenatal irradiation
Mutation research, 2004
The developing human embryo and fetus undergo very radiosensitive stages during the prenatal development. It is likely that the induction of low dose related effects such as bystander effects, the adaptive response, and genomic instability would have profound effects on embryonic and fetal development. In this paper, I review what has been reported on the induction of these three phenomena in exposed embryos and fetuses. All three phenomena have been shown to occur in murine embryonic or fetal cells and structures, although the induction of an adaptive response (and also likely the induction of bystander effects) are limited in terms of when during development they can be induced and the dose or dose-rate used to treat animals in utero. In contrast, genomic instability can be induced throughout development, and the effects of radiation exposure on genome instability can be observed for long times after irradiation including through pre- and postnatal development and into the next ge...