The relationship between trust in AI and trustworthy machine learning technologies (original) (raw)

Technologies for Trustworthy Machine Learning: A Survey in a Socio-Technical Context

2021

Concerns about the societal impact of AI-based services and systems has encouraged governments and other organisations around the world to propose AI policy frameworks to address fairness, accountability, transparency and related topics. To achieve the objectives of these frameworks, the data and software engineers who build machine-learning systems require knowledge about a variety of relevant supporting tools and techniques. In this paper we provide an overview of technologies that support building trustworthy machine learning systems, i.e., systems whose properties justify that people place trust in them. We argue that four categories of system properties are instrumental in achieving the policy objectives, namely fairness, explainability, auditability and safety & security (FEAS). We discuss how these properties need to be considered across all stages of the machine learning life cycle, from data collection through run-time model inference. As a consequence, we survey in this pa...

Trustworthy AI: From Principles to Practices

ArXiv, 2021

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people’s everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society’s trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems...

Trustworthy artificial intelligence

Asian Journal of Philosophy

This paper develops an account of trustworthy AI. Its central idea is that whether AIs are trustworthy is a matter of whether they live up to their function-based obligations. We argue that this account serves to advance the literature in a couple of important ways. First, it serves to provide a rationale for why a range of properties that are widely assumed in the scientific literature, as well as in policy, to be required of trustworthy AI, such as safety, justice, and explainability, are properties (often) instantiated by trustworthy AI. Second, we connect the discussion on trustworthy AI in policy, industry, and the sciences with the philosophical discussion of trustworthiness. We argue that extant accounts of trustworthiness in the philosophy literature cannot make proper sense of trustworthy AI and that our account compares favourably with its competitors on this front.

Exploring the landscape of trustworthy artificial intelligence: Status and challenges

Intelligent decision technologies, 2024

Artificial Intelligence (AI) has pervaded everyday life, reshaping the landscape of business, economy, and society through the alteration of interactions and connections among stakeholders and citizens. Nevertheless, the widespread adoption of AI presents significant risks and hurdles, sparking apprehension regarding the trustworthiness of AI systems by humans. Lately, numerous governmental entities have introduced regulations and principles aimed at fostering trustworthy AI systems, while companies, research institutions, and public sector organizations have released their own sets of principles and guidelines for ensuring ethical and trustworthy AI. Additionally, they have developed methods and software toolkits to aid in evaluating and improving the attributes of trustworthiness. The present paper aims to explore this evolution by analysing and supporting the trustworthiness of AI systems. We commence with an examination of the characteristics inherent in trustworthy AI, along with the corresponding principles and standards associated with them. We then examine the methods and tools that are available to designers and developers in their quest to operationalize trusted AI systems. Finally, we outline research challenges towards end-to-end engineering of trustworthy AI by-design.

Making Sense of the Conceptual Nonsense ‘Trustworthy AI’

AI and Ethics , 2022

Following the publication of numerous ethical principles and guidelines, the concept of 'Trustworthy AI' has become widely used. However, several AI ethicists argue against using this concept, often backing their arguments with decades of conceptual analyses made by scholars who studied the concept of trust. In this paper, I describe the historical philosophical roots of their objection and the premise that trust entails a human quality that technologies lack. Then, I review existing criticisms about 'Trustworthy AI' and the consequence of ignoring these criticisms: if the concept of 'Trustworthy AI' is kept being used, we risk attributing responsibilities to agents who cannot be held responsible, and consequently, deteriorate social structures which regard accountability and liability. Nevertheless, despite suggestions to shift the paradigm from 'Trustworthy AI' to 'Reliable AI', I argue that, realistically, this concept will be kept being used. I end by arguing that, ultimately, AI ethics is also about power, social justice, and scholarly activism. Therefore, I propose that community-driven and social justice-oriented ethicists of AI and trust scholars further focus on (a) democratic aspects of trust formation; and (b) draw attention to critical social aspects highlighted by phenomena of distrust. This way, it will be possible to further reveal shifts in power relations, challenge unfair status quos, and suggest meaningful ways to keep the interests of citizens.

The Language of Trustworthy AI

This document is a guide and record of the development for the NIST (National Institute of Standards and Technology) glossary of terms for trustworthy and responsible artifcial intelligence (AI) and machine learning (ML). The glossary effort seeks to promote a shared understanding and improved communication among individuals and organizations seeking to operationalize trustworthy and responsible AI through approaches such as the NIST AI Risk Management Framework (AI RMF).

Never trust, always verify : a roadmap for Trustworthy AI?

2022

Artificial Intelligence (AI) is becoming the corner stone of many systems used in our daily lives such as autonomous vehicles, healthcare systems, and unmanned aircraft systems. Machine Learning is a field of AI that enables systems to learn from data and make decisions on new data based on models to achieve a given goal. The stochastic nature of AI models makes verification and validation tasks challenging. Moreover, there are intrinsic biaises in AI models such as reproductibility bias, selection bias (e.g., races, genders, color), and reporting bias (i.e., results that do not reflect the reality). Increasingly, there is also a particular attention to the ethical, legal, and societal impacts of AI. AI systems are difficult to audit and certify because of their black-box nature. They also appear to be vulnerable to threats; AI systems can misbehave when untrusted data are given, making them insecure and unsafe. Governments, national and international organizations have proposed several principles to overcome these challenges but their applications in practice are limited and there are different interpretations in the principles that can bias implementations. In this paper, we examine trust in the context of AI-based systems to understand what it means for an AI system to be trustworthy and identify actions that need to be undertaken to ensure that AI systems are trustworthy. To achieve this goal, we first review existing approaches proposed for ensuring the trustworthiness of AI systems, in order to identify potential conceptual gaps in understanding what trustworthy AI is. Then, we suggest a trust (resp. zero-trust) model for AI and suggest a set of properties that should be satisfied to ensure the trustworthiness of AI systems.

Lessons Learned from Assessing Trustworthy AI in Practice

Digital Society

Building artificial intelligence (AI) systems that adhere to ethical standards is a complex problem. Even though a multitude of guidelines for the design and development of such trustworthy AI systems exist, these guidelines focus on high-level and abstract requirements for AI systems, and it is often very difficult to assess if a specific system fulfills these requirements. The Z-Inspection® process provides a holistic and dynamic framework to evaluate the trustworthiness of specific AI systems at different stages of the AI lifecycle, including intended use, design, and development. It focuses, in particular, on the discussion and identification of ethical issues and tensions through the analysis of socio-technical scenarios and a requirement-based framework for ethical and trustworthy AI. This article is a methodological reflection on the Z-Inspection® process. We illustrate how high-level guidelines for ethical and trustworthy AI can be applied in practice and provide insights fo...

Keep trusting! A plea for the notion of Trustworthy AI

AI & SOCIETY, 2023

A lot of attention has recently been devoted to the notion of Trustworthy AI (TAI). However, the very applicability of the notions of trust and trustworthiness to AI systems has been called into question. A purely epistemic account of trust can hardly ground the distinction between trustworthy and merely reliable AI, while it has been argued that insisting on the importance of the trustee's motivations and goodwill makes the notion of TAI a categorical error. After providing an overview of the debate, we contend that the prevailing views on trust and AI fail to account for the ethically relevant and value-laden aspects of the design and use of AI systems, and we propose an understanding of the notion of TAI that explicitly aims at capturing these aspects. The problems involved in applying trust and trustworthiness to AI systems are overcome by keeping apart trust in AI systems and interpersonal trust. These notions share a conceptual core but should be treated as distinct ones.