When Spectral Domain Meets Spatial Domain in Graph Neural Networks (original) (raw)
Related papers
Bridging the Gap Between Spectral and Spatial Domains in Graph Neural Networks
ArXiv, 2020
This paper aims at revisiting Graph Convolutional Neural Networks by bridging the gap between spectral and spatial design of graph convolutions. We theoretically demonstrate some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain. The obtained general framework allows to lead a spectral analysis of the most popular ConvGNNs, explaining their performance and showing their limits. Moreover, the proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain. We also propose a generalization of the depthwise separable convolution framework for graph convolutional networks, what allows to decrease the total number of trainable parameters by keeping the capacity of the model. To the best of our knowledge, such a framework has never been used in the GNNs literature. Our proposals are evaluated on both transductive and inductive graph learning problem...
Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks
ACM Computing Surveys
Deep learning’s performance has been extensively recognized recently. Graph neural networks (GNNs) are designed to deal with graph-structural data that classical deep learning does not easily manage. Since most GNNs were created using distinct theories, direct comparisons are impossible. Prior research has primarily concentrated on categorizing existing models, with little attention paid to their intrinsic connections. The purpose of this study is to establish a unified framework that integrates GNNs based on spectral graph and approximation theory. The framework incorporates a strong integration between spatial- and spectral-based GNNs while tightly associating approaches that exist within each respective domain.
Analyzing the Expressive Power of Graph Neural Networks in a Spectral Perspective
2021
In the recent literature of Graph Neural Networks (GNN), the expressive power of models has been studied through their capability to distinguish if two given graphs are isomorphic or not. Since the graph isomorphism problem is NP-intermediate, and Weisfeiler-Lehman (WL) test can give sufficient but not enough evidence in polynomial time, the theoretical power of GNNs is usually evaluated by the equivalence of WL-test order, followed by an empirical analysis of the models on some reference inductive and transductive datasets. However, such analysis does not account the signal processing pipeline, whose capability is generally evaluated in the spectral domain. In this paper, we argue that a spectral analysis of GNNs behavior can provide a complementary point of view to go one step further in the understanding of GNNs. By bridging the gap between the spectral and spatial design of graph convolutions, we theoretically demonstrate some equivalence of the graph convolution process regardl...
Convolutional Graph Neural Networks
2019 53rd Asilomar Conference on Signals, Systems, and Computers, 2019
Convolutional neural networks (CNNs) restrict the, otherwise arbitrary, linear operation of neural networks to be a convolution with a bank of learned filters. This makes them suitable for learning tasks based on data that exhibit the regular structure of time signals and images. The use of convolutions, however, makes them unsuitable for processing data that do not exhibit such a regular structure. Graph signal processing (GSP) has emerged as a powerful alternative to process signals whose irregular structure can be described by a graph. Central to GSP is the notion of graph convolutional filters which can be used to define convolutional graph neural networks (GNNs). In this paper, we show that the graph convolution can be interpreted as either a diffusion or aggregation operation. When combined with nonlinear processing, these different interpretations lead to different generalizations which we term selection and aggregation GNNs. The selection GNN relies on linear combinations of signal diffusions at different resolutions combined with node-wise nonlinearities. The aggregation GNN relies on linear combinations of neighborhood averages of different depth. Instead of nodewise nonlinearities, the nonlinearity in aggregation GNNs is pointwise on the different aggregation levels. Both of these models particularize to regular CNNs when applied to time signals but are different when applied to arbitrary graphs. Numerical evaluations show different levels of performance for selection and aggregation GNNs.
Graph Neural Networks Are More Powerful Than we Think
arXiv (Cornell University), 2022
Despite the remarkable success of Graph Neural Networks (GNNs), the common belief is that their representation power is limited and that they are at most as expressive as the Weisfeiler-Lehman (WL) algorithm. In this paper, we argue the opposite and show that standard GNNs, with anonymous inputs, produce more discriminative representations than the WL algorithm. Our novel analysis employs linear algebraic tools and characterizes the representation power of GNNs with respect to the eigenvalue decomposition of the graph operators. We prove that GNNs are able to generate distinctive outputs from white uninformative inputs, for, at least, all graphs that have different eigenvalues. We also show that simple convolutional architectures with white inputs, produce equivariant features that count the closed paths in the graph and are provably more expressive than the WL representations. Thorough experimental analysis on graph isomorphism and graph classification datasets corroborates our theoretical results and demonstrates the effectiveness of the proposed approach. This paper gives an affirmative answer to the aforementioned research question. Our analysis utilizes spectral decomposition tools to show that the source of the WL test as a
What Do Graph Convolutional Neural Networks Learn?
2022
Graph neural networks (GNNs) have gained traction over the past few years for their superior performance in numerous machine learning tasks. Graph Convolutional Neural Networks (GCN) are a common variant of GNNs that are known to have high performance in semi-supervised node classification (SSNC), and work well under the assumption of homophily. Recent literature has highlighted that GCNs can achieve strong performance on heterophilous graphs under certain "special conditions". These arguments motivate us to understand why, and how, GCNs learn to perform SSNC. We find a positive correlation between similarity of latent node embeddings of nodes within a class and the performance of a GCN. Our investigation on underlying graph structures of a dataset finds that a GCN's SSNC performance is significantly influenced by the consistency and uniqueness in neighborhood structure of nodes within a class.
ArXiv, 2021
ZHIQIAN CHEN, Department of Computer Science and Engineering, Mississippi State University, U.S.A FANGLAN CHEN, Department of Computer Science, Virginia Tech, U.S.A LEI ZHANG, Department of Computer Science, Virginia Tech, U.S.A TAORAN JI, Department of Computer Science, Virginia Tech, U.S.A KAIQUN FU, Department of Computer Science, Virginia Tech, U.S.A LIANG ZHAO, Department of Computer Science, Emory University, U.S.A FENG CHEN, Department of Computer Science, The University of Texas at Dallas, U.S.A LINGFEI WU, JD.COM Silicon Valley Research Center, U.S.A CHARU AGGARWAL, IBM T. J. Watson Research Center, U.S.A CHANG-TIEN LU, Department of Computer Science, Virginia Tech, U.S.A
A Practical Tutorial on Graph Neural Networks
ACM Computing Surveys, 2022
Graph neural networks (GNNs) have recently grown in popularity in the field of artificial intelligence (AI) due to their unique ability to ingest relatively unstructured data types as input data. Although some elements of the GNN architecture are conceptually similar in operation to traditional neural networks (and neural network variants), other elements represent a departure from traditional deep learning techniques. This tutorial exposes the power and novelty of GNNs to AI practitioners by collating and presenting details regarding the motivations, concepts, mathematics, and applications of the most common and performant variants of GNNs. Importantly, we present this tutorial concisely, alongside practical examples, thus providing a practical and accessible tutorial on the topic of GNNs.
Invariance-Preserving Localized Activation Functions for Graph Neural Networks
IEEE Transactions on Signal Processing
Graph signals are signals with an irregular structure that can be described by a graph. Graph neural networks (GNNs) are information processing architectures tailored to these graph signals and made of stacked layers that compose graph convolutional filters with nonlinear activation functions. Graph convolutions endow GNNs with invariance to permutations of the graph nodes' labels. In this paper, we consider the design of trainable nonlinear activation functions that take into consideration the structure of the graph. This is accomplished by using graph median filters and graph max filters, which mimic linear graph convolutions and are shown to retain the permutation invariance of GNNs. We also discuss modifications to the backpropagation algorithm necessary to train local activation functions. The advantages of localized activation function architectures are demonstrated in four numerical experiments: source localization on synthetic graphs, authorship attribution of 19th century novels, movie recommender systems and scientific article classification. In all cases, localized activation functions are shown to improve model capacity.
Graphs, Convolutions, and Neural Networks: From Graph Filters to Graph Neural Networks
IEEE Signal Processing Magazine, 2020
Network data can be conveniently modeled as a graph signal, where data values are assigned to nodes of a graph that describes the underlying network topology. Successful learning from network data is built upon methods that effectively exploit this graph structure. In this work, we leverage graph signal processing to characterize the representation space of graph neural networks (GNNs). We discuss the role of graph convolutional filters in GNNs and show that any architecture built with such filters has the fundamental properties of permutation equivariance and stability to changes in the topology. These two properties offer insight about the workings of GNNs and help explain their scalability and transferability properties which, coupled with their local and distributed nature, make GNNs powerful tools for learning in physical networks. We also introduce GNN extensions using edge-varying and autoregressive moving average graph filters and discuss their properties. Finally, we study the use of GNNs in recommender systems and learning decentralized controllers for robot swarms.