Ethylene and Jasmonic Acid Signaling Affect the NPR1-Independent Expression of Defense Genes Without Impacting Resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 Mutant (original) (raw)
Related papers
THE PLANT CELL ONLINE, 1999
The Arabidopsis NPR1 gene was previously shown to be required for the salicylic acid (SA)-and benzothiadiazole (BTH)-induced expression of pathogenesis-related ( PR ) genes and systemic acquired resistance. The dominant ssi1 (for suppressor of SA insensitivity) mutation characterized in this study defines a new component of the SA signal transduction pathway that bypasses the requirement of NPR1 for expression of the PR genes and disease resistance. The ssi1 mutation caused PR ( PR -1 , BGL2 [ PR-2 ], and PR-5 ) genes to be constitutively expressed and restored resistance to an avirulent strain of Pseudomonas syringae pv tomato in npr1-5 (previously called sai1 ) mutant plants. In addition, ssi1 plants were small, spontaneously developed hypersensitive response-like lesions, accumulated elevated levels of SA, and constitutively expressed the antimicrobial defensin gene PDF1.2. The phenotypes of the ssi1 mutant are SA dependent. When SA accumulation was prevented in ssi1 npr1-5 plants by expressing the SA-degrading salicylate hydroxylase ( nahG ) gene, all of the phenotypes associated with the ssi1 mutation were suppressed. However, lesion formation and expression of the PR genes were restored in these plants by the application of BTH. Interestingly, expression of PDF1.2 , which previously has been shown to be SA independent but jasmonic acid and ethylene dependent, was also suppressed in ssi1 npr1-5 plants by the nahG gene. Furthermore, exogenous application of BTH restored PDF1.2 expression in these plants. Our results suggest that SSI1 may function as a switch modulating cross-talk between the SA-and jasmonic acid/ethylene-mediated defense signal transduction pathways.
Molecular plant-microbe …, 2000
The Arabidopsis enhanced disease susceptibility 4 (eds4) mutation causes enhanced susceptibility to infection by the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326 (Psm ES4326). Gene-for-gene resistance to bacteria carrying the avirulence gene avrRpt2 is not significantly affected by eds4. Plants homozygous for eds4 exhibit reduced expression of the pathogenesis-related gene PR-1 after infection by Psm ES4326, weakened responses to treatment with the signal molecule salicylic acid (SA), impairment of the systemic acquired resistance response, and reduced accumulation of SA after infection with Psm ES4326. These phenotypes indicate that EDS4 plays a role in SA-dependent signaling. SA has been shown to have a negative effect on activation of gene expression by the signal molecule jasmonic acid (JA). Two mutations that cause reduced SA levels, eds4 and pad4, cause heightened responses to inducers of JA-dependent gene expression, providing genetic evidence to support the idea that SA interferes with JA-dependent signaling. Two possible working models of the role of EDS4 in governing activation of defense responses are presented.
A Novel Signaling Pathway Controlling Induced Systemic Resistance in Arabidopsis
Plants have the ability to acquire an enhanced level of resistance to pathogen attack after being exposed to specific biotic stimuli. In Arabidopsis, nonpathogenic, root-colonizing Pseudomonas fluorescens bacteria trigger an induced systemic resistance (ISR) response against infection by the bacterial leaf pathogen P. syringae pv tomato. In contrast to classic, pathogen-induced systemic acquired resistance (SAR), this rhizobacteria-mediated ISR response is independent of salicylic acid accumulation and pathogenesis-related gene activation. Using the jasmonate response mutant jar1 , the ethylene response mutant etr1 , and the SAR regulatory mutant npr1 , we demonstrate that signal transduction leading to P. fluorescens WCS417r-mediated ISR requires responsiveness to jasmonate and ethylene and is dependent on NPR1. Similar to P. fluorescens WCS417r, methyl jasmonate and the ethylene precursor 1-aminocyclopropane-1-carboxylate were effective in inducing resistance against P. s. tomato in salicylic acid-nonaccumulating NahG plants. Moreover, methyl jasmonate-induced protection was blocked in jar1 , etr1 , and npr1 plants, whereas 1-aminocyclopropane-1-carboxylate-induced protection was affected in etr1 and npr1 plants but not in jar1 plants. Hence, we postulate that rhizobacteria-mediated ISR follows a novel signaling pathway in which components from the jasmonate and ethylene response are engaged successively to trigger a defense reaction that, like SAR, is regulated by NPR1. We provide evidence that the processes downstream of NPR1 in the ISR pathway are divergent from those in the SAR pathway, indicating that NPR1 differentially regulates defense responses, depending on the signals that are elicited during induction of resistance.
Molecular Plant-Microbe Interactions®, 2006
Many plant pathogens suppress antimicrobial defenses using virulence factors that modulate endogenous host defenses. The Pseudomonas syringae phytotoxin coronatine (COR) is believed to promote virulence by acting as a jasmonate analog, because COR-insensitive 1 (coi1) Arabidopsis thaliana and tomato mutants are impaired in jasmonate signaling and exhibit reduced susceptibility to P. syringae. To further investigate the role of jasmonate signaling in disease development, we analyzed several jasmonate-insensitive A. thaliana mutants for susceptibility to P. syringae pv. tomato strain DC3000 and sensitivity to COR. Jasmonate-insensitive1 (jin1) mutants exhibit both reduced susceptibility to P. syringae pv. tomato DC3000 and reduced sensitivity to COR, whereas jasmonate-resistant 1 (jar1) plants exhibit wild-type responses to both COR and P. syringae pv. tomato DC3000. A jin1 jar1 double mutant does not exhibit enhanced jasmonate insensitivity, suggesting that JIN1 functions downstream ...
Molecular Plant-Microbe Interactions, 2010
Cross-talk between jasmonate (JA), ethylene (ET), and Salicylic acid (SA) signaling is thought to operate as a mechanism to fine-tune induced defenses that are activated in response to multiple attackers. Here, 43 Arabidopsis genotypes impaired in hormone signaling or defense-related processes were screened for their ability to express SA-mediated suppression of JA-responsive gene expression. Mutant cev1, which displays constitutive expression of JA and ET responses, appeared to be insensitive to SA-mediated suppression of the JA-responsive marker genes PDF1.2 and VSP2. Accordingly, strong activation of JA and ET responses by the necrotrophic pathogens Botrytis cinerea and Alternaria brassicicola prior to SA treatment counteracted the ability of SA to suppress the JA response. Pharmacological assays, mutant analysis, and studies with the ETsignaling inhibitor 1-methylcyclopropene revealed that ET signaling renders the JA response insensitive to subsequent suppression by SA. The APETALA2/ETHYLENE RE-SPONSE FACTOR transcription factor ORA59, which regulates JA/ET-responsive genes such as PDF1.2, emerged as a potential mediator in this process. Collectively, our results point to a model in which simultaneous induction of the JA and ET pathway renders the plant insensitive to future SA-mediated suppression of JA-dependent defenses, which may prioritize the JA/ET pathway over the SA pathway during multi-attacker interactions.
Proceedings of The National Academy of Sciences, 1998
The endogenous plant hormones salicylic acid (SA) and jasmonic acid (JA), whose levels increase on pathogen infection, activate separate sets of genes encoding antimicrobial proteins in Arabidopsis thaliana. The pathogen-inducible genes PR-1, PR-2, and PR-5 require SA signaling for activation, whereas the plant defensin gene PDF1.2, along with a PR-3 and PR-4 gene, are induced by pathogens via an SA-independent and JA-dependent pathway. An Arabidopsis mutant, coi1, that is affected in the JA-response pathway shows enhanced susceptibility to infection by the fungal pathogens Alternaria brassicicola and Botrytis cinerea but not to Peronospora parasitica, and vice versa for two Arabidopsis genotypes (npr1 and NahG) with a defect in their SA response. Resistance to P. parasitica was boosted by external application of the SA-mimicking compound 2,6-dichloroisonicotinic acid [Delaney, T., et al. (1994) Science 266, 1247-1250] but not by methyl jasmonate (MeJA), whereas treatment with MeJA but not 2,6-dichloroisonicotinic acid elevated resistance to Alternaria brassicicola. The protective effect of MeJA against A. brassicicola was the result of an endogenous defense response activated in planta and not a direct effect of MeJA on the pathogen, as no protection to A. brassicicola was observed in the coi1 mutant treated with MeJA. These data point to the existence of at least two separate hormone-dependent defense pathways in Arabidopsis that contribute to resistance against distinct microbial pathogens.
The Plant Journal, 2002
Defence against pathogens in Arabidopsis is orchestrated by at least three signalling molecules: salicylic acid (SA), jasmonic acid (JA) and ethylene (ET). The hrl1 (hypersensitive response-like lesions 1) mutant of Arabidopsis is characterized by spontaneous necrotic lesions, accumulation of reactive oxygen species, constitutive expression of SA-and ET/JA-responsive defence genes, and enhanced resistance to virulent bacterial and oomycete pathogens. Epistasis analyses of hrl1 with npr1, etr1, coi1 and SAdepleted nahG plants revealed novel interactions between SA and ET/JA signalling pathways in regulating defence gene expression and cell death. RNA gel-blot analysis of RNA isolated separately from the lesion + and the lesion ± leaves of double mutants of hrl1 revealed different signalling requirements for the expression of defence genes in these tissues. Expression of the ET/JA-responsive PDF1.2 gene was markedly reduced in hrl1 npr1 and in SA-depleted hrl1 nahG plants. In hrl1 nahG plants, expression of PDF1.2 was regulated by benzathiadiazole in a concentration-dependent manner: induced at low concentration and suppressed at high concentration. The hrl1 etr1 plants lacked systemic PR-1 expression, and exhibited compromised resistance to virulent Pseudomonas syringae and Peronospora parasitica. Inhibiting JA responses in hrl1 coi1 plants lead to exaggerated cell death and severe stunting of plants. Finally, the hrl1 mutation lead to elevated expression of AtrbohD, which encodes a major subunit of the NADPH oxidase complex. Our results indicate that defence gene expression and resistance against pathogens in hrl1 is regulated synergistically by SA and ET/JA defence pathways.
The Plant Cell, 1996
Systemic acquired resistance is a pathogen-inducible defense mechanism in plants. The resistant state is dependent on endogenous accumulation of salicylic acid (SA) and is characterized by the activation of genes encoding pathogenesisrelated (PR) proteins. Recently, selected nonpathogenic, root-colonizing biocontrol bacteria have been shown to trigger a systemic resistance response as well. To study the molecular basis underlying this type of systemic resistance, we developed an Arabidopsis-based model system using Fusarium oxysporum f sp raphani and Pseudomonas syringae pv tomato as challenging pathogens. Colonization of the rhizosphere by the biological control strain WCS417r of R fluorescens resulted in a plant-mediated resistance response that significantly reduced symptoms elicited by both challenging pathogens; Moreover, growth of R syringae in infected leaves was strongly inhibited in R fluorescens WCS417r-treated plants. Transgenic Arabidopsis NahG plants, unable to accumulate SA, and wild-type plants were equally responsive to R fluorescens WCS417r-mediated induction of resistance. Furthermore, R fluorescens WCS417r-mediated systemic resistance did not coincide with the accumulation of PR mRNAs before challenge inoculation. These results indicate that R fluorescens WCS417r induces a pathway different from the one that controls classic systemic acquired resistance and that this pathway leads to a form of systemic resistance independent of SA accumulation and PR gene expression.
Induced Disease Resistance Signaling in Plants
Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues Vol. III, 2006
To protect themselves from disease, plants have evolved sophisticated inducible defense mechanisms in which the signal molecules salicylic acid, jasmonic acid and ethylene often play crucial roles. Elucidation of signaling pathways controlling induced disease resistance is a major objective in research on plant-pathogen interactions. The capacity of a plant to develop a broad-spectrum, systemic acquired resistance (SAR) after primary infection with a necrotizing pathogen is well known and its signal transduction pathway extensively studied. Plants of which the roots have been colonized by specific strains of non-pathogenic fluorescent Pseudomonas spp. develop a phenotypically similar form of protection that is called rhizobacteria-mediated induced systemic resistance (ISR). In contrast to pathogen-induced SAR, which is regulated by salicylic acid, rhizobacteria-mediated ISR is controlled by a signaling pathway in which the phytohormones jasmonic acid and ethylene play key roles. In the past decade, the model plant species Arabidopsis thaliana has been extensively explored to study the molecular basis of systemically induced resistance. Here we review the current knowledge on induced disease resistance signaling in plants.