Modulation of Bile Acid Metabolism to Improve Plasma Lipid and Lipoprotein Profiles (original) (raw)
Related papers
Bile acid sequestrants: mechanisms of action on bile acid and cholesterol metabolism
European Journal of Clinical Pharmacology, 1991
Interruption of the enterohepatic circulation of bile acids by cholestyramine or colestipol influences the hepatic metabolism of cholesterol in many ways. The synthesis of bile acids is increased, as reflected by a severalfold increase in the activity of the cholesterol 7a hydroxylase, the rate-determining enzyme in bile acid synthesis. The increased metabolism of cholesterol to bile acids causes an enhanced demand of cholesterol in the hepatocytes, which respond with both new synthesis of cholesterol, as reflected in a several-fold increase of the HMG-CoA reductase activity, and increased expression of LDL receptors. As a consequence, the plasma level of LDLcholesterol is lowered. The hepatic secretion rate of VLDL particles is increased. Cholestyramine therapy does not affect the output of biliary lipids or the cholesterol saturation of bile, indicating that treatment with bile acid sequestrants should not be associated with any increased risk of gallstone formation.
Specific inhibition of bile acid transport alters plasma lipids and GLP-1
BMC cardiovascular disorders, 2015
Elobixibat is a minimally absorbed ileal bile acid (BA) transporter (IBAT) inhibitor in development against chronic constipation (CC) and constipation-predominant Irritable Bowel Syndrome (IBS-C). CC is associated with an increased risk for cardiovascular disease and type2 diabetes mellitus. The objectives of this study were to evaluate metabolic effects of elobixibat. Effects on plasma lipids and BA synthesis were evaluated utilizing a 4-week, placebo-controlled study in patients with dyslipidemia while changes of glucagon-like peptide-1 (GLP-1) by elobixibat was assayed in samples from a 14 day high-dose elobixibat study in patients with CC. Thirty-six dyslipidemic patients, 21 females, mean age 63 years, were randomized to 2.5 mg or 5 mg elobixibat or placebo once daily for four weeks. The primary endpoint was the change in low density lipoprotein (LDL) cholesterol. Secondary endpoints included other lipid parameters and serum 7α-hydroxy-4-cholesten-3-one (C4), a marker of BA (bi...
Atherosclerosis, 2003
Male Hartley guinea pigs were randomly allocated to one of four treatments, 10 guinea pigs per group, for 12 weeks. The control diet contained no ASBT inhibitor (ASBTi) or simvastatin. Low ASBTi (LowASBTi) and high ASBTi (HighASBTi) were monotherapies containing 0.03 g/100 g and 0.1 g/100 g of the ASBTi SC-435. Combination therapy (COMBO) was a combination therapy consisting of 0.03 g/100 g ASBTi and 0.05 g/100 g simvastatin. Based on food consumption, guinea pigs received 17.2 and 47.8 mg/kg per day ASBTi in the ASBTi groups or 13.7 mg/kg per day ASBTi and 21.4 mg/kg per day simvastatin in the COMBO group. The amount of cholesterol in each diet was 0.25 g/100 g. LDL cholesterol was 40 and 70% lower with the HighASBTi and COMBO treatments compared to controls. Plasma triglycerides (TG) were 70% lower with COMBO therapy while HDL cholesterol was 43-47% higher with all treatments. Hepatic free cholesterol was reduced 60-80% with all treatments. Cholesterol content in the aortic arch was reduced by 25 and 42% in the HighASBTi and COMBO groups. Fecal bile acids were increased by 2.5-and 4-fold with HighASBTi and COMBO treatments. These data suggest that the interruption in the enterohepatic circulation of bile acids by ASBTi and statin co-administration therapy cause a significant reduction in plasma cholesterol concentrations and attenuate the progression of atherosclerosis in guinea pigs.
The FASEB Journal, 2002
Reduction of plasma cholesterol by statins is fundamental to prevent coronary heart disease. Such therapy is often sub-optimal, however, particularly in patients with reduced LDL receptors (familial hypercholesterolemia), and novel or adjuvant therapies are therefore warranted. Cholesterol elimination is profoundly influenced by the rate of its conversion to bile acids (BA), regulated by the enzyme Cyp7a1. Induced fecal loss of BA by resin treatment reduces plasma cholesterol, presumably through induction of hepatic LDL receptors (LDLR). We here describe the effect of PR835, a drug belonging to a new class of lipid-lowering agents that inhibit the Slc10a2 protein, the intestinal transporter responsible for active uptake of BA. Treatment reduced plasma cholesterol by 40% in mice devoid of both the LDLR and its ligand, apoE, while triglycerides and HDL cholesterol were unchanged. Cyp7a1 enzyme activity and mRNA were induced several-fold, and hepatic HMG CoA reductase mRNA increased, mirroring an induced synthesis of BA and cholesterol. The addition of a statin potentiated the effect, leading to reductions of plasma total and LDL cholesterol by 64% and 70%, respectively. These effects could not be attributed to induction of other known hepatic lipoprotein receptors and indicate the presence of new points of targeting in lipid-lowering therapy.
Diabetologia, 2012
Aims/hypothesis The primary aim of this completed multicentre randomised, parallel, double-blind placebo-controlled study was to elucidate the mechanisms of glucose-lowering with colesevelam and secondarily to investigate its effects on lipid metabolism (hepatic de novo lipogenesis, cholesterol and bile acid synthesis). Methods Participants with type 2 diabetes (HbA 1c 6.7-10.0% [50-86 mmol/mol], fasting glucose <16.7 mmol/l, fasting triacylglycerols <3.9 mmol/l and LDL-cholesterol >1.55 mmol/l) treated with diet and exercise, sulfonylurea, metformin or a combination thereof, were randomised by a central coordinator to either 3.75 g/day colesevelam (n=30) or placebo (n=30) for 12 weeks at three clinical sites in the USA. The primary measure was the change from baseline in glucose kinetics with colesevelam compared to placebo treatment. Fasting and postprandial glucose, lipid and bile acid pathways were measured at baseline and post-treatment using stable isotope techniques. Plasma glucose, insulin, total glucagon-like peptide-1 (GLP-1), total glucose-dependent insulinotropic polypeptide (GIP), glucagon and fibroblast growth factor-19 (FGF-19) concentrations were measured during the fasting state and following a meal tolerance test. Data was collected by people blinded to treatment. Results Compared with placebo, colesevelam improved HbA 1c (mean change from baseline of 0.3 [SD 1.1]% for placebo [n=28] and −0.3 [1.1]% for colesevelam [n=26]), glucose concentrations, fasting plasma glucose clearance and glycolytic disposal of oral glucose. Colesevelam did not affect gluconeogenesis or appearance rate (absorption) of oral glucose. Fasting endogenous glucose production and glycogenolysis significantly increased with placebo but were unchanged with colesevelam (treatment effect did not reach statistical significance). Compared with placebo, colesevelam increased total GLP-1 and GIP concentrations and improved HOMA-beta cell function while insulin, glucagon and HOMA-insulin resistance were unchanged. Colesevelam increased cholesterol and bile acid synthesis and decreased FGF-19 concentrations. However, no effect was seen on fractional hepatic de novo lipogenesis. Conclusions/interpretation Colesevelam, a non-absorbed bile acid sequestrant, increased circulating incretins and improved tissue glucose metabolism in both the fasting and postprandial states in a manner different from other approved oral agents.
Novel pathways for glycaemic control in type 2 diabetes: focus on bile acid modulation
Diabetes, Obesity and Metabolism, 2008
Type 2 diabetes is a common disorder with high risk of macrovascular and microvascular complications. These complications are largely driven by hyperglycaemia, dyslipidaemia and hypertension, for which aggressive treatment is thus warranted. Achieving and maintaining control of all three risk factors is especially difficult, however, and new therapeutic approaches could be useful. Bile acids have a well-established and important role in cholesterol homeostasis. Normally, their levels are maintained primarily by ileal reabsorption and enterohepatic recycling. Bile acid sequestrants bind bile acids in the intestine, reduce this recycling and deplete the bile acid pool, thereby stimulating use of hepatic cholesterol for bile acid synthesis, which leads to accelerated removal of LDL from the plasma and a decrease in LDL-cholesterol levels. Interestingly, recent evidence suggests that bile acid sequestrants can lower glucose levels to a clinically meaningful degree. This review presents this evidence and the possible mechanisms by which these glucose-lowering effects occur and discusses the apparently unique ability of bile acid sequestrants among lipid-lowering agents to significantly improve two cardiovascular risk factors, hyperglycaemia and dyslipidaemia. There is renewed interest in the use of bile acid sequestrants in individuals with type 2 diabetes, most of whom would benefit from additional reductions in both LDL-cholesterol and glycaemia.
The Journal of Lipid Research, 2003
Discovery of the ileal apical sodium-dependent bile acid transporter (ASBT) permitted development of specific inhibitors of bile acid reabsorption, potentially a new class of cholesterol-lowering agents. In the present study, we tested the hypothesis that combining the novel ASBT inhibitor, SC-435, with the HMG-CoA reductase inhibitor, atorvastatin, would potentiate reductions in LDL cholesterol (LDL-C) and LDL apolipoprotein B (apoB). ApoB kinetic studies were performed in miniature pigs fed a typical human diet and treated with the combination of SC-435 (5 mg/kg/day) plus atorvastatin (3 mg/kg/day) (SC-435 ؉ A) or a placebo. SC-435 ؉ A decreased plasma total cholesterol by 23% and LDL-C by 40%. Multicompartmental analysis (SAAM II) demonstrated that LDL apoB significantly decreased by 35% due primarily to a 45% increase in the LDL apoB fractional catabolic rate (FCR). SC-435 ؉ A significantly decreased hepatic concentrations of free cholesterol and cholesteryl ester, and increased hepatic LDL receptor mRNA consequent to increased cholesterol 7 ␣hydroxylase expression and activity. In comparison, SC-435 (10 mg/kg/day) monotherapy decreased LDL apoB by 10% due entirely to an 18% increase in LDL apoB FCR, whereas atorvastatin monotherapy (3 mg/kg/day) decreased LDL apoB by 30% due primarily to a 22% reduction in LDL apoB production.
Bile acids, obesity, and the metabolic syndrome
Best Practice & Research Clinical Gastroenterology, 2014
Bile acids are increasingly recognized as key regulators of systemic metabolism. While bile acids have long been known to play important and direct roles in nutrient absorption, bile acids also serve as signaling molecules. Bile acid interactions with the nuclear hormone receptor farnesoid X receptor (FXR) and the membrane receptor G-protein-coupled bile acid receptor 5 (TGR5) can regulate incretin hormone and fibroblast growth factor 19 (FGF19) secretion, cholesterol metabolism, and systemic energy expenditure. Bile acid levels and distribution are altered in type 2 diabetes and increased following bariatric procedures, in parallel with reduced body weight and improved insulin sensitivity and glycemic control. Thus, modulation of bile acid levels and signaling, using bile acid binding resins, TGR5 agonists, and FXR agonists, may serve as a potent therapeutic approach for the treatment of obesity, type 2 diabetes, and other components of the metabolic syndrome in humans.
Bile Acids in Physiology, Pathology and Pharmacology
Current Drug Metabolism, 2015
Bile acids, synthesized by hepatocytes from cholesterol, are specific and quantitatively important organic components of bile, where they are the main driving force of the osmotic process that generates bile flow toward the canaliculus. The bile acid pool comprises a variety of species of amphipathic acidic steroids. They are not mere detergent molecules that play a key role in fat digestion and the intestinal absorption of hydrophobic compounds present in the intestinal lumen after meals, including liposoluble vitamins. They are now known to be involved in the regulation of multiple functions in liver cells, mainly hepatocytes and cholangiocytes, and also in extrahepatic tissues. The identification of nuclear receptors, such as farnesoid X receptor (FXR or NR1H4), and plasma membrane receptors, such as the G protein-coupled bile acid receptor (TGR5, GPBAR1 or MBAR), which are able to trigger specific and complex responses upon activation (with dissimilar sensitivities) by different bile acid molecular species and synthetic agonists, has opened a new and promising field of research whose implications extend to physiology, pathology and pharmacology. In addition, pharmacological development has taken advantage of advances in the understanding of the chemistry and biology of bile acids and the biological systems that interact with them, which in addition to the receptors include several families of transporters and export pumps, to generate novel bile acid derivatives aimed at treating different liver diseases, such as cholestasis, biliary diseases, metabolic disorders and cancer. This review is an update of the role of bile acids in health and disease.
Science translational medicine, 2016
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the Western world, and safe and effective therapies are needed. Bile acids (BAs) and their receptors [including the nuclear receptor for BAs, farnesoid X receptor (FXR)] play integral roles in regulating whole-body metabolism and hepatic lipid homeostasis. We hypothesized that interruption of the enterohepatic BA circulation using a luminally restricted apical sodium-dependent BA transporter (ASBT) inhibitor (ASBTi; SC-435) would modify signaling in the gut-liver axis and reduce steatohepatitis in high-fat diet (HFD)-fed mice. Administration of this ASBTi increased fecal BA excretion and messenger RNA (mRNA) expression of BA synthesis genes in liver and reduced mRNA expression of ileal BA-responsive genes, including the negative feedback regulator of BA synthesis, fibroblast growth factor 15. ASBT inhibition resulted in a marked shift in hepatic BA composition, with a reduction in hydrophilic, FXR a...