Organization of suppression in receptive fields of neurons in cat visual cortex (original) (raw)

The organization of receptive fields in area 18 neurones of the cat varies with the spatio-temporal characteristics of the visual stimulus

Experimental Brain Research, 1988

The spatial frequency tuning curves of neurones of area 18 depend upon the velocity of the visual stimulus. The higher the velocity the lower the spatial frequencies to which the cell is tuned. Since in area 17 the size of the cell receptive field is inversely related with the optimal spatial frequency to which the cell responds, we have investigated whether the shift of the optimal spatial frequency with the velocity corresponds to a "change" in the receptive field size. We recorded extracellularly from neurones in area 18; for each cell we selected two gratings, one of high spatial frequency drifting at low velocity and another of low spatial frequency drifting at high velocity to which the cell gave comparable responses. The results show that the masking of the cells receptive field which abolishes the response to the high frequency low velocity grating does not prevent the cell from responding to the low frequency high velocity grating. We conclude that the size of the receptive field of neurones in area 18 depends upon the characteristics (spatial frequency and velocity) of the visual stimulus.

Binocular cross-orientation suppression in the cat's striate cortex

Journal of neurophysiology, 1998

When a cortical cell is activated by an optimal sinusoidal grating, its response can be attenuated by a superimposed second grating oriented orthogonally to the optimal stimulus. This effect is known as cross-orientation suppression (COS). In previous work, monocular characteristics have been explored and interocular tests have been conducted in an attempt to locate the origin of the suppression. In this study, we have recorded extracellularly from cortical cells to investigate the binocular characteristics of COS. Our hypothesis is that binocular disparity influences the strength of the effect. Our results do not support this supposition. We find that binocular COS is as strong as monocular COS, but disparity changes are of no consequence. We also conducted interocular tests in which the optimal grating and the orthogonal mask were seen by separate eyes. Although most interocular effects were weak, they were present in almost every cell and spanned a wide range of suppression stren...

Laminar differences in the spatiotemporal structure of simple cell receptive fields in cat area 17

Previous studies of cat visual cortex have shown that the spatiotemporal (S-T) structure of simple cell receptive fields correlates with direction selectivity. However, great heterogeneity exists in the relationship and this has implications for models. Here we report a laminar basis for some of the heterogeneity. S-T structure and direction selectivity were measured in 101 cells using stationary counterphasing and drifting gratings, respectively. Two procedures were used to assess S-T structure and its relation to direction selectivity. In the first, the S-T orientations of receptive fields were quantified by fitting response temporal phase versus stimulus spatial phase data. In the second procedure, conventional linear predictions of direction selectivity were computed from the amplitudes and phases of responses to stationary gratings. Extracellular recording locations were reconstructed histologically. Among direction-selective cells, S-T orientation was greatest in layer 4B and it correlated well (r ϭ 0.76) with direction selectivity. In layer 6, S-T orientation was uniformly low, overlapping little with layer 4B, and it was not correlated with directional tuning. Layer 4A was intermediate in S-T orientation and its relation (r ϭ 0.46) to direction selectivity. The same laminar patterns were observed using conventional linear predictions. The patterns do not reflect laminar differences in direction selectivity since the layers were equivalent in directional tuning. We also evaluated a model of linear spatiotemporal summation followed by a static nonlinear amplification (exponent model) to account for direction selectivity. The values of the exponents were estimated from differences between linearly predicted and actual amplitude modulations to counterphasing gratings. Comparing these exponents with another exponent-that required to obtain perfect matches between linearly predicted and measured directional tuning-indicates that an exponent model largely accounts for direction selectivity in most cells in layer 4, particularly layer 4B, but not in layer 6. Dynamic nonlinearities seem essential for cells in layer 6. We suggest that these laminar differences may partly reflect the differential involvement of geniculocortical and intracortical mechanisms.

Inhibitory contributions to spatiotemporal receptive-field structure and direction selectivity in simple cells of cat area 17

Journal of neurophysiology, 1999

Intracortical inhibition contributes to direction selectivity in primary visual cortex, but how it acts has been unclear. We investigated this problem in simple cells of cat area 17 by taking advantage of the link between spatiotemporal (S-T) receptive-field structure and direction selectivity. Most cells in layer 4 have S-T-oriented receptive fields in which gradients of response timing across the field confer a preferred direction of motion. Linear summation of responses across the receptive field, followed by a static nonlinear amplification, has been shown previously to account for directional tuning in layer 4. We tested the hypotheses that inhibition acts by altering S-T structure or the static nonlinearity or both. Drifting and counterphasing sine wave gratings were used to measure direction selectivity and S-T structure, respectively, in 17 layer 4 simple cells before and during iontophoresis of bicuculline methiodide (BMI), a GABAA antagonist. S-T orientation was quantified...

Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex

Journal of neurophysiology, 1991

1. Simple cells in cat striate cortex were studied with a number of stimulation paradigms to explore the extent to which linear mechanisms determine direction selectivity. For each paradigm, our aim was to predict the selectivity for the direction of moving stimuli given only the responses to stationary stimuli. We have found that the prediction robustly determines the direction and magnitude of the preferred response but overestimates the nonpreferred response. 2. The main paradigm consisted of comparing the responses of simple cells to contrast reversal sinusoidal gratings with their responses to drifting gratings (of the same orientation, contrast, and spatial and temporal frequencies) in both directions of motion. Although it is known that simple cells display spatiotemporally inseparable responses to contrast reversal gratings, this spatiotemporal inseparability is demonstrated here to predict a certain amount of direction selectivity under the assumption that simple cells sum ...

Response histogram shapes and tuning curves: The predicted responses of several cortical cell types to drifting gratings stimuli

Biological Cybernetics, 1989

The responses to visual stimuli of simple cortical cells show linear spatial summation within and between their receptive field subunits. Complex cortical cells do not show this linearity. We analyzed the simulated responses to drifting sinusoidal grating stimuli of simple and of several types of complex cells. The complex cells, whose responses are seen to be half-wave rectified before pooling, have receptive fields consisting of two or more DOG (difference-of-Gaussians) shaped subunits. In both cases of stimulation by contrast-reversal gratings or drifting gratings, the cells' response as a function of spatial frequency is affected by the subunit distances 2 lambda and the stimulation frequency omega. Furthermore, an increased number of subunits (a larger receptive field) yields a narrower peak tuning curve with decreased modulation depth for many of the spatial frequencies. The average and the peak response tuning curves are compared for the different receptive field types.

Asymmetric suppression outside the classical receptive field of the visual cortex

1999

Areas beyond the classical receptive field (CRF) can modulate responses of the majority of cells in the primary visual cortex of the cat (Walker et al., 1999). Although general characteristics of this phenomenon have been reported previously, little is known about the detailed spatial organization of the surrounds. Previous work suggests that the surrounds may be uniform regions that encircle the CRF or may be limited to the "ends" of the CRF. We have examined the spatial organization of surrounds of single-cell receptive fields in the primary visual cortex of anesthetized, paralyzed cats. The CRF was stimulated with an optimal drifting grating, whereas the surround was probed with a second small grating patch placed at discrete locations around the CRF. For most cells that exhibit suppression, the surrounds are spatially asymmetric, such that the suppression originates from a localized region. We find a variety of suppres-sive zone locations, but there is a slight bias for suppression to occur at the end zones of the CRF. The spatial pattern of suppression is independent of the parameters of the suppressive stimulus used, although the effect is clearest with isooriented surround stimuli. A subset of cells exhibit axially symmetric or uniform surround fields. These results demonstrate that the surrounds are more specific than previously realized, and this specialization has implications for the processing of visual information in the primary visual cortex. One possibility is that these localized surrounds may provide a substrate for figure-ground segmentation of visual scenes.

Length and width tuning of neurons in the cat's primary visual cortex

Journal of neurophysiology, 1994

1. The classically defined receptive field of a visual neuron is the area of visual space over which the cell responds to visual stimuli. It is well established, however, that the discharge produced by an optimal stimulus can be modulated by the presence of additional stimuli that by themselves do not produce any response. This study examines inhibitory influences that originate from areas located outside of the classical (i.e., excitatory) receptive field. Previous work has shown that for some cells the response to a properly oriented bar of light becomes attenuated when the bar extends beyond the receptive field, a phenomenon known as end-inhibition (or length tuning). Analogously, it has been shown that increasing the number of cycles of a drifting grating stimulus may also inhibit the firing of some cells, an effect known as side-inhibition (or width tuning). Very little information is available, however, about the relationship between end- and side-inhibition. We have examined ...

Detection of the movement direction by the cells with directional receptive fields in the primary visual cortex of the cat

Health, 2010

The study was performed on neurons with direction selective (DS) receptive fields (RFs) in the primary visual cortex of the cat. Preferred directions (PDs) of these cells to a single light spot and a system of two identical light spots moving across the RF with a given angle between them were compared. Directional interactions appeared when the angles between the directions of the two moving spots were 30º or 60º. PD for 56% of the cells coincided with bisectors of these angles. These cells responded to a combination of the two moving stimuli as if only one stimulus moved in the RF in an intermediate direction. This direction coincided with PD of the DS neuron to a single spot. Also, the investigation revealed that DS neurons responded to stimuli moving at such angles as 180º (to preferred and opposite directions simultaneously). In the further experiment we investigated responses of the DS cells in the primary visual cortex of RF. The angle between the directions of the two moving spots was 60º. These cells responded to a combination of the two moving stimuli as if only one stimulus moved in RF in an intermediate direction. The more relative luminance of one of spots in pair was, the closer the intermediate direction approached to the direction of this spot).

Direction selectivity of simple cells in the primary visual cortex: Comparison of two alternative mathematical models. I: Response to drifting gratings

Computers in Biology and Medicine, 2007

Two models of a single hypercolumn in the primary visual cortex are presented, and used for the analysis of direction selectivity in simple cells. The two models differ as to the arrangement of inhibitory connections: in the first ("antiphase model") inhibition is in phase opposition with excitation, but with a similar orientation tuning; in the second ("in-phase model"), inhibition is in phase with excitation, but with broader orientation tuning. Simulation results, performed by using drifting gratings with different orientations, and different spatial and temporal frequencies, show that both models are able to explain the origin of direction preference of simple cells.