Creatine kinase isoenzyme transitions in muscle grafts of mice (original) (raw)

Occurrence of heterogenous forms of the subunits of creatine kinase in various muscle and nonmuscle tissues and their behaviour during myogenesis

European journal of biochemistry / FEBS, 1981

Purified, homodimeric creatine kinases from chicken were subjected to two-dimensional gel analysis under dissociating conditions. Each of the subunits M-creatine kinase and B-creatine kinase was resolved into a basic and an acidic subspecies with very similar mobilities in the sodium dodecylsulfate dimension. The M-creatine kinase subspecies were found in myogenic cells, fast muscle, slow muscle and the B-creatine kinase subspecies were present in heart, gizzard and brain. The creatine kinase subunits were identified in these tissues by a variety of methods like immunoreplicas of two-dimensional gels, immunoprecipitations, or coelectrophoresis with purified creatine kinase and all gave the same results. In the course of myogenic development in vitro the subspecies were synthesized coordinately and no indication was found for a differential regulation of any of the subspecies of the creatine kinase subunits. No radioactive phosphorus was incorporated into either one of the subspecies...

Functional Equivalence of Creatine Kinase Isoforms in Mouse Skeletal Muscle

Journal of Biological Chemistry, 1997

Creatine kinase (CK) is a highly conserved enzyme abundant in skeletal muscle that has a key role in high energy phosphate metabolism. The localization of the muscle isoenzyme of CK (MM-CK) to the M line and the sarcoplasmic reticulum of myofibrils has been suggested to be important for proper force development in skeletal muscle. The importance of this subcellular compartmentation has not been directly tested in vivo. To test the role of myofibrilar localization of CK, the consequences of a complete CK isoform switch from MM-CK to the brain (BB-CK) isoform, which does not localize to the M line, was studied in transgenic mouse skeletal muscle. In MM-CK knockout mice there are large contractile defects. When MM-CK was replaced by BB-CK, the aberrant contractile phenotypes seen in MM-CK knockout mice were returned to normal despite the lack of myofibrillar localization. These results indicate that CK compartmentation to the myofibril of skeletal muscle is not essential for contractile function and that there is functional equivalence of creatine kinase isoforms in supporting cellular energy metabolism.

Regenerated soleus muscle shows reduced creatine kinase efflux after contractile activity in vitro

Applied Physiology, Nutrition, and Metabolism, 2015

Regenerated skeletal muscles show less muscle damage after strenuous muscle exercise. The aim of the studies was to investigate if the regeneration is associated with reduced muscle creatine kinase (CK) efflux immediately after the exercise. Cryolesion was applied to the soleus muscle of 3-month-old C57BL/6J male mice. Then total CK efflux was assessed in vitro in the regenerated muscles without exercise or after 100 eccentric contractions. The same measurements were performed in the control muscles, which were not exposed to cryolesion. Regenerated muscles generated weaker (P < 0.05) twitches, but stronger (P < 0.05) 150-Hz and 300-Hz tetani with prolonged (P < 0.01) contraction times compared with the control muscles. There was no difference between regenerated and control muscles in the total CK efflux without exercise, but only control muscles showed an increase (P < 0.001) in the CK efflux after the exercise. Our results suggest that muscle regeneration is associate...

Expression of muscle-gene-specific isozymes of phosphorylase and creatine kinase in innervated cultured human muscle

The Journal of Cell Biology, 1986

Isozymes of creatine kinase and glycogen phosphorylase are excellent markers of skeletal muscle maturation. In adult innervated muscle only the muscle-gene-specific isozymes are present, whereas aneurally cultured human muscle has predominantly the fetal pattern of isozymes. We have studied the isozyme pattern of human muscle cultured in monolayer and innervated by rat embryo spinal cord explants for 20-42 d. In this culture system, large groups of innervated muscle fibers close to the ventral part of the spinal cord explant continuously contracted. The contractions were reversibly blocked by 1 mM d-tubo-curarine. In those innervated fibers, the total activity and the muscle-gene-specific isozymes of both enzymes increased significantly. The amount of musclegene-specific isozymes directly correlated with the duration of innervation. Control noninnervated muscle fibers from the same dishes as the innervated fibers remained biochemically immature. This study demonstrated that de novo innervation of human muscle cultured in monolayer exerts a time-related maturational influence that is not mediated by a diffusable neural factor.

Analysis of muscle creatine kinase gene regulatory elements in skeletal and cardiac muscles of transgenic mice

Molecular and cellular biology, 1996

Regulatory regions of the mouse muscle creatine kinase (MCK) gene, previously discovered by analysis in cultured muscle cells, were analyzed in transgenic mice. The 206-bp MCK enhancer at nt-1256 was required for high-level expression of MCK-chloramphenicol acetyltransferase fusion genes in skeletal and cardiac muscle; however, unlike its behavior in cell culture, inclusion of the 1-kb region of DNA between the enhancer and the basal promoter produced a 100-fold increase in skeletal muscle activity. Analysis of enhancer control elements also indicated major differences between their properties in transgenic muscles and in cultured muscle cells. Transgenes in which the enhancer right E box or CArG element were mutated exhibited expression levels that were indistinguishable from the wild-type transgene. Mutation of three conserved E boxes in the MCK 1,256-bp 5' region also had no effect on transgene expression in thigh skeletal muscle expression. All these mutations significantly ...

Asynchronous regulation of muscle specific isozymes of creatine kinase, glycogen phosphorylase, lactic dehydrogenase and phosphoglycerate mutase in innervated and non-innervated cultured human muscle

Neuroscience Letters, 1988

Expression of muscle specific isozymes (MSIs) of creatine kinase (CK, EC 2.7.3.2), glycogen phosphorylase (GP, EC 2.4.1.1)~ lactate dehydrogenase (LDH, EC 1.1.1.27) and phosphoglycerate mutase (PGAM, EC 2.7.5.3) was studied both in cultured human muscle fibers which had been innervated (InnCHMFs) for 2# 83 days, and in their non-innervated (non-lnnCHMFs) sister control. In non-InnCHMFs, the MSI of PGAM was never detected, and there was no change in the expression of the MSI of CK during the entire period examined; the expression of MSIs of LDH and GP showed linear increase during the entire period of growth. The expression of MSIs of all 4 enzymes was significantly enhanced in InnCHMFs as compared to non-innervated control. The expression of MSIs of GP and PGAM, and to a lesser degree of LDH increased significantly in correlation with the duration of innervation; the MSI of CK increased linearly only up to 54 days of innervation and plateaued afterward. This study demonstrates: (1) innervation of cultured human muscle fibers by fetal rat spinal cord exerts a time-related maturational influence on their cellular isoenzymatic pattern; (2) to achieve induction and characteristic time-related expression of various MSIs, the requirements for neuronal influences seem to differ. Creatine kinase (CK), glycogen phoshorylase (GP), phosphoglycerate mutase (PGAM) and lactate dehydrogenase (LDH) are present in the adult normal, innervated human skeletal muscle virtually only in the form of their muscle-specific isozyme (MSI) [18]. In the fetus, 'fetal' (in respect to muscle) isozymes of these enzymes predominate, while their MSIs are either weakly or not at all expressed [18]. Fetal

The isoenzyme-diagnostic regions of muscle-type creatine kinase, the M-260 and M-300 box, are not responsible for its binding to the myofibrillar M-band

European Journal of Cell Biology, 1998

Creatine kinaseprotein targetingskeletal muscle associationconfocal microscopysite-directed mutagenesis Muscle-type creatine kinase is known for its unique interaction with the myofibrillar M-band, but the molecular origin for this structural relationship is not well understood. A systematic sequence comparison between the highly homologous cytosolic isoforms, muscle-type and brain-type creatine kinase, yielded two isoenzyme-specific regions in the muscle-type creatine kinases, the M-260 box (residues 258-270) and the M-300 box (residues 300-315). These particular regions were conspicuous for the specific interaction of this CK isoenzyme, but not of brain-type creatine kinase, with the sarcomeric M-band. In situ diffusion assays with fluorescently labeled native, as well as mutated muscle-type creatine kinase variants, were used to study by laser confocal microscopy their association with the M