Assessment of a 7-DOF Hand Exoskeleton for Neurorehabilitation (original) (raw)
Related papers
Robotics for rehabilitation of hand movement in stroke survivors
Advances in Mechanical Engineering
This article aims to give an overall review of research status in hand rehabilitation robotic technology, evaluating a number of devices. The main scope is to explore the current state of art to help and support designers and clinicians make better choices among varied devices and components. The review also focuses on both mechanical design, usability and training paradigms since these parts are interconnected for an effective hand recovery. In order to study the rehabilitation robotic technology status, the devices have been divided in two categories: end-effector robots and exoskeleton devices. The end-effector robots are more flexible than exoskeleton devices in fitting the different size of hands, reducing the setup time and increasing the usability for new patients. They suffer from the control of distal joints and haptic aspects of object manipulation. In this way, exoskeleton devices may represent a new opportunity. Nevertheless their design is complex and a deep investigation of hand biomechanics and physical human-robot interaction is required. The main hand exoskeletons have been developed in the last decade and the results are promising demonstrated by the growth of the commercialized devices. Finally, a discussion on the complexity to define which design is better and more effective than the other one is summarized for future investigations.
Design and Development of a Hand Exoskeleton for Rehabilitation Following Stroke
Procedia Engineering, 2012
In Australia, a major cause of disability is the stroke and it is the second highest cause of death after coronary heart disease. Studies have predicted that form 2008 to 2017 more than 0.5 million people is likely to suffer from stroke in Australia. In addition, after stroke 88 % of the patients suffer from disability and stays at home. In this paper, a post stroke therapeutic device has been designed for hand motor function rehabilitation that a stroke survivor can use for bilateral movement practice. Out of twenty-one degrees of freedom of hand fingers, the prototype of the hand exoskeleton allowed fifteen degrees of freedom. The device is designed to be portable so that the user can engage in other activities while using the device. A prototype of the device is fabricated to provide complete flexion and extension motion of individual fingers of the left hand (impaired hand) based on the movements of the right hand (healthy hand) fingers. In addition, testing of the device on a healthy subject was conducted to validate if the design met the requirements.
Development and pilot testing of HEXORR: Hand EXOskeleton Rehabilitation Robot
Journal of NeuroEngineering and Rehabilitation, 2010
Background: Following acute therapeutic interventions, the majority of stroke survivors are left with a poorly functioning hemiparetic hand. Rehabilitation robotics has shown promise in providing patients with intensive therapy leading to functional gains. Because of the hand's crucial role in performing activities of daily living, attention to hand therapy has recently increased.
Feasibility Study of a Hand Exoskeleton for Rehabilitation of Post-Stroke Patients
Volume 3: Advanced Composite Materials and Processing; Robotics; Information Management and PLM; Design Engineering, 2012
This paper illustrates the activity done by the authors for the development of a hand exoskeleton with two degrees of freedom addressed to the rehabilitation of post-stroke patients. The literature is investigated and many design issues are deeply discussed with the purpose to provide a reader who is approaching this problem with useful guidelines. The feasibility study of a one degree of freedom mechanism for one finger, intended as the basic module of the targeted hand exoskeleton, is outlined: two kinematic chains having six and eight links respectively are presented and discussed.
2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, 2010
Chronic hand impairment is common following stroke. While mass practice of movement has shown promise for rehabilitation, initial impairment of the hand may be too severe to permit even approximations of the desired movement. To facilitate movement, especially of pinch, we are building an exoskeleton to permit independent actuation of each of the three joints of the index finger. Separate actuators are used for flexion and extension, with closed-loop control of either force or position. In the future, a companion thumb exoskeleton will be developed to permit coordinated performance of pinch. This system will be used to assess strategies for optimizing rehabilitation of pinch and reach-to-pinch following stroke. The design of the actuated index finger exoskeleton is presented here. I. INTRODUCTION and impairment is a prevalent outcome for a variety of neuromuscular disorders, such as stroke. Upwards of 700,000 people in the U.S. experience a stroke each year [1]. Of these, 60-75% will live beyond one year after incidence, resulting in a current stroke population of 3 million [2-4]. Arm function is acutely impaired in a large majority of those diagnosed with stroke [5-7]. Furthermore, acute hemiparesis presages chronic hemiparesis in over 40°0 of the cases [5, 6]. Chronic deficits are especially prevalent in the distal upper extremities. In fact, finger extension is the motor function most often impaired [8]. This distal limb impairment is especially problematic, because proper hand function is crucial to manual exploration and manipulation of the environment. Indeed, loss of hand function is a major source of disability in neuromuscular disorders, frequently preventing effective self-care and limiting employment opportunities. One study in the UK reported that more than half of the subjects Manuscript received February 11, 2007. This work was supported in part by the Davee Foundation and the Coleman Foundation.
Stroke rehabilitation using exoskeleton-based robotic exercisers: Mini Review
Stroke is a debilitating disease that has afflicted millions of people throughout the world. Assisting physiotherapists in post-stroke activities to conduct rehabilitation therapies, scientific community has presented a new type of man-machine intelligent systems i.e. exoskeleton based exercisers. These devices help the patients having neurological disabilities to partially or fully regain their motor performance by applying forces to the affected finger phalanx and preventing unsuitable motion patterns. The exoskeletons because of their wide range of sensory capabilities have replaced traditional assessment of stroke patients. This article reviews developments in robotic prosthetics and exoskeletons. The primary design requirements of these devices are identified. Highlighting the authors' research achievements in this domain, a collection of exoskeleton-based hand rehabilitation devices has been then presented with a brief description about their mechanical designs. Finally, a...
IEEE Transactions on Haptics
Most current hand exoskeletons have been designed specifically for rehabilitation, assistive or haptic applications to simplify the design requirements. Clinical studies on post-stroke rehabilitation have shown that adapting assistive or haptic applications into physical therapy sessions significantly improves the motor learning and treatment process. The recent technology can lead to the creation of generic hand exoskeletons that are application-agnostic. In this paper, our motivation is to create guidelines and best practices for generic exoskeletons by reviewing the literature of current devices. First, we describe each application and briefly explain their design requirements, and then list the design selections to achieve these requirements. Then, we detail each selection by investigating the existing exoskeletons based on their design choices, and by highlighting their impact on application types. With the motivation of creating efficient generic exoskeletons in the future, we finally summarize the best practices in the literature.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2019
Robots have the potential to help provide exercise therapy in a repeatable and reproducible manner for stroke survivors. To facilitate rehabilitation of the wrist and fingers joint, an electromechanical exoskeleton was developed that simultaneously moves the wrist and metacarpophalangeal joints. The device was designed for the ease of manufacturing and maintenance, with specific considerations for countries with limited resources. Active participation of the user is ensured by the implementation of electromyographic control and visual feedback of performance. Muscle activity requirements, movement parameters, range of motion, and speed of the device can all be customized to meet the needs of the user. Twelve stroke survivors, ranging from the subacute to chronic phases of recovery (mean 10.6 months poststroke) participated in a pilot study with the device. Participants completed 20 sessions, each lasting 45 minutes. Overall, subjects exhibited statistically significant changes (p < 0.05) in clinical outcome measures following the treatment, with the Fugl-Meyer Stroke Assessment score for the upper extremity increasing from 36 to 50 and the Barthel Index increasing from 74 to 89. Active range of wrist motion increased by 19° while spasticity decreased from 1.75 to 1.29 on the Modified Ashworth Scale. Thus, this device shows promise for improving rehabilitation outcomes, especially for patients in countries with limited resources.
Design, Development and Evaluation of a New Hand Exoskeleton for Stroke Rehabilitation at Home
Politeknik Dergisi, 2020
Rehabilitation at home is a growing need worldwide. Previous studies have suggested different devices in terms of motion and force transmission. In this study, we present design and development process of a novel hand exercise exoskeleton. The main advantages of our device that are portable, wearable, light weight (345 grams) and suitable for home use. The greatest feature of the device is the force transmitting mechanism. The spring mechanism manufactured by using commercial compression springs has some advantages in terms of size and weight. In design studies of the device, we have made use of the systematic approach. In this way, the best of three possible design solutions has been determined. Then the best design solution was selected. A few prototypes of the device were manufactured. The device has been tested clinically on both unimpaired individuals and hemiplegic hand patients for a short time. It was reported that the exoskeleton was suited to passive exercises. The result ...
An actuated finger exoskeleton for hand rehabilitation following stroke
2007
Chronic hand impairment is common following stroke. While mass practice of movement has shown promise for rehabilitation, initial impairment of the hand may be too severe to permit even approximations of the desired movement. To facilitate movement, especially of pinch, we are building an exoskeleton to permit independent actuation of each of the three joints of the index finger. Separate actuators are used for flexion and extension, with closed-loop control of either force or position. In the future, a companion thumb exoskeleton will be developed to permit coordinated performance of pinch. This system will be used to assess strategies for optimizing rehabilitation of pinch and reach-to-pinch following stroke. The design of the actuated index finger exoskeleton is presented here.