ONCE IN CLASS WITH SAM (original) (raw)
1995, Contemporary Mathematics
Abstract
Delicate and novel analysis of a modified Postnikov tower is used to show that the geometric dimension of 36 times the Hopf bundle over plO is greater than 6.
Key takeaways
AI
- The geometric dimension of 36 times the Hopf bundle over plO exceeds 6.
- Utilize modified Postnikov towers for novel homotopical analysis.
- K-invariants are integral for understanding Eilenberg MacLane spaces.
- Hypothesis conditions in Lemma 5 reveal significant lifting properties.
- The analysis concludes with Proposition 1 related to the lifting of mappings.
Figures (1)
Here K,, is the Bilenberg MacLane space with homotopy Z2 in dimension n. The k-invariants are defined by the following relations.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (10)
- J. F. Adams, Geometric dimension of bundles over RP 11 , Proc. of Int. Conf. on Prospects in Math., RIMS , Kyoto Univ. (1973) 1-17.
- L. Astey, Geometric dimension of bundles over• real projective spaces, Quar. Jour. Math. Oxford 31 (1980) 139-155.
- D. M. Davis , A strong nonimmersion theorem for real projective spaces, Annals of ti.fath 120 (1984) 517-528.
- S. Gitler and rvf. lvlahowald, The geometric dimensiori of real stable vector bundles, Bol. Soc. Mat. ~lex. (1966) 85-107.
- _ _ _ _ The geometric dimension of 1'tal stable vector bundles, Addendum, Bo!. Soc. ~lat. ~lex. (1967) 32-34.
- G. F. Paechtcr, The groups 1ri(\-';1,m) f Quar. Jour. tvlath. Oxford 7 (1956) 249-268.
- E. Thomas , Seminar on fiber spaces, Lecture Notes in Math., Springer Verlag 13 (1966).
- H. Toda, Composition methods in homotopy groups of spheres, Annals of rviath Studies, Princeton Univ. Press (1962).
- C'INVESTAV. DEPARTA~IENTO DE i\lATEM,\.TIC'AS. APoo. POST,\L l"'-740. 07000. i\lEXICO.
- F.