Why the Future Cannot be Open in the Quantum World (original) (raw)
Related papers
Why the Quantum World is Deterministic
2021
In this study, I argue that the quantum world is deterministic if quantum mechanics is complete. At first glance, quantum world seems to be deterninistic, because it cannot always predict measurement value with certainty. However, many interpretations regard quantum mechanics as deterministic. These interpretations only suggest that the quantum mechanical world can be deterministic. I argue that, although quantum mechanics cannot predict the future with certainty, the quantum mechanical world must be deterministic, and the value observed by the observer is determined. I examine the following two cases: (1) the wave-function completely describes the physical state and (2) the wave-function does not describe the physical state. Then, I argue that the quantum world must be deterministic in either case when quantum mechanics is complete.
The logic of the future in quantum theory
Synthese, 2016
According to quantum mechanics, statements about the future made by sentient beings like us are, in general, neither true nor false; they must satisfy a many-valued logic. I propose that the truth value of such a statement should be identified with the probability that the event it describes will occur. After reviewing the history of related ideas in logic, I argue that it gives an understanding of probability which is particularly satisfactory for use in quantum mechanics. I construct a lattice of future-tense propositions, with truth values in the interval [0, 1], and derive logical properties of these truth values given by the usual quantum-mechanical formula for the probability of a history.
2021
How come such a successful theory like Quantum Mechanics has so many mysteries? The history of this theory is replete with dubious interpretations and controversies. The knowledge of its predictions, however, caused the amazing technological revolution of the last hundred years. In its very beginning Einstein pointed out that there was something missing due to contradictions with the relativity theory. So, even though Quantum Mechanics explains all the physical phenomena, due to its mysteries, there were many attempts to find a way to “complete” it, e.g. hidden-variable theories. In this paper, we present these mysteries, with special attention to the concepts of physical reality imposed by quantum mechanics, the role of the observer, prediction limits, definition of collapse, and how to deal with correlated states (the basic strategy for quantum computers and quantum teleportation). The discussion is carried out by accepting that there is nothing important missing. We are just rest...
Time, Quantum Mechanics, and Probability
Synthese, 1998
A variety of ideas arising in decoherence theory, and in the ongoing debate over Everett's relative-state theory, can be linked to issues in relativity theory and the philosophy of time, specifically the relational theory of tense and of identity over time. These have been systematically presented in companion papers (Saunders 1995; 1996a); in what follows we shall consider the same circle of ideas, but specifically in relation to the interpretation of probability, and its identification with relations in the Hilbert Space norm. The familiar objection that Everett's approach yields probabilities different from quantum mechanics is easily dealt with. The more fundamental question is how to interpret these probabilities consistent with the relational theory of change, and the relational theory of identity over time. I shall show that the relational theory needs nothing more than the physical, minimal criterion of identity as defined by Everett's theory, and that this ca...
Quantum mechanics and elements of reality
It is widely accepted that a Born probability of 1 is sufficient for the existence of a corresponding element of reality. Recently Vaidman has extended this idea to the ABL probabilities of the time-symmetrized version of quantum mechanics originated by Aharonov, Bergmann, and Lebowitz. Several authors have objected to Vaidman's time-symmetrized elements of reality without casting doubt on the widely accepted sufficiency condition for `ordinary' elements of reality. In this paper I show that while the proper truth condition for a quantum counterfactual is an ABL probability of 1, neither a Born probability of 1 nor an ABL probability of 1 is sufficient for the existence of an element of reality. The reason this is so is that the contingent properties of quantum-mechanical systems are extrinsic. To obtain this result, I need to discuss objective probabilities, retroactive causality, and the objectivity or otherwise of the psychological arrow of time. One consequence of the ex...
Quantum Mechanics Mysteries: Reality, Observer, Prediction, Collapse, and Correlated States
2021
How come such a successful theory like Quantum Mechanics has so many mysteries? The history of this theory is replete with dubious interpretations and controversies. The knowledge of its predictions, however, caused the amazing technological revolution of the last hundred years. In its very beginning Einstein pointed out that there was something missing due to contradictions with the relativity theory. So, even though Quantum Mechanics explains all the physical phenomena, due to its mysteries, there were many attempts to find a way to ``complete" it, e.g. hidden-variable theories. In this paper, we present these mysteries, with special attention to the concepts of physical reality imposed by quantum mechanics, the role of the observer, prediction limits, definition of collapse, and how to deal with correlated states (the basic strategy for quantum computers and quantum teleportation). The discussion is carried out by accepting that there is nothing important missing. We are jus...
What quantum mechanics is trying to tell us
American Journal of Physics, 2000
This article presents a novel interpretation of quantum mechanics. It extends the meaning of "measurement" to include all property-indicating facts. Intrinsically space is undifferentiated: there are no points on which a world of locally instantiated physical properties could be built. Instead, reality is built on facts, in the sense that the properties of things are extrinsic, or supervenient on property-indicating facts. The actual extent to which the world is spatially and temporally differentiated (that is, the extent to which spatiotemporal relations and distinctions are warranted by the facts) is necessarily limited. Notwithstanding that the state vector does nothing but assign probabilities, quantum mechanics affords a complete understanding of the actual world. If there is anything that is incomplete, it is the actual world, but its incompleteness exists only in relation to a conceptual framework that is more detailed than the actual world. Two deep-seated misconceptions are responsible for the interpretational difficulties associated with quantum mechanics: the notion that the spatial and temporal aspects of the world are adequately represented by sets with the cardinality of the real numbers, and the notion of an instantaneous state that evolves in time. The latter is an unwarranted (in fact, incoherent) projection of our apparent "motion in time" into the world of physics. Equally unwarranted, at bottom, is the use of causal concepts. There nevertheless exists a "classical" domain in which language suggestive of nomological necessity may be used. Quantum mechanics not only is strictly consistent with the existence of this domain but also presupposes it in several ways.
QUANTUM MECHANICS AS GENERALIZED THEORY OF PROBABILITIES
It is argued that quantum mechanics does not have merely a predictive function like other physical theories; it consists in a formalisation of the conditions of possibility of any prediction bearing upon phenomena whose circumstances of detection are also conditions of production. This is enough to explain its probabilistic status and theoretical structure. Published in: Collapse, 8, 87-121, 2014
Quantum mechanics, randomness, and deterministic reality
Physics Letters A, 1992
We describe and analyze a new formulation of Bohmian mechanics-the deterministic theory of particles in motion that emerges from Schrödinger's equation for a system of particles when we merely insist that "particles" means particles. This mechanics resolves all paradoxes associated with the measurement problem in nonrelativistic quantum mechanics. It accounts for quantum randomness, absolute uncertainty, the meaning of the wave function of a system, collapse of the wave function, and familiar (macroscopic) reality.