CMetric: A Driving Behavior Measure using Centrality Functions (original) (raw)
Related papers
StylePredict: Machine Theory of Mind for Human Driver Behavior From Trajectories
arXiv (Cornell University), 2020
Studies have shown that autonomous vehicles (AVs) behave conservatively in a traffic environment composed of human drivers and do not adapt to local conditions and socio-cultural norms. It is known that socially aware AVs can be designed if there exist a mechanism to understand the behaviors of human drivers. We present a notion of Machine Theory of Mind (M-ToM) to infer the behaviors of human drivers by observing the trajectory of their vehicles. Our M-ToM approach, called StylePredict, is based on trajectory analysis of vehicles, which has been investigated in robotics and computer vision. StylePredict mimics human ToM to infer driver behaviors, or styles, using a computational mapping between the extracted trajectory of a vehicle in traffic and the driver behaviors using graph-theoretic techniques, including spectral analysis and centrality functions. We use StylePredict to analyze driver behavior in different cultures in the USA, China, India, and Singapore, based on traffic density, heterogeneity, and conformity to traffic rules and observe an inverse correlation between longitudinal (overspeeding) and lateral (overtaking, lane-changes) driving styles.
2017 IEEE International Conference on Big Data (Big Data), 2017
Over one billion cars interact with each other on the road every day. Each driver has his own driving style, which could impact safety, fuel economy and road congestion. Knowledge about the driving style of the driver could be used to encourage "better" driving behaviour through immediate feedback while driving, or by scaling auto insurance rates based on the aggressiveness of the driving style. In this work we report on our study of driving behaviour profiling based on unsupervised data mining methods. The main goal is to detect the different driving behaviours, and thus to cluster drivers with similar behaviour. This paves the way to new business models related to the driving sector, such as Pay-How-You-Drive insurance policies and car rentals. Driver behavioral characteristics are studied by collecting information from GPS sensors on the cars and by applying three different analysis approaches (DP-means, Hidden Markov Models, and Behavioural Topic Extraction) to the contextual scene detection problems on car trips, in order to detect different behaviour along each trip. Subsequently, drivers are clustered in similar profiles based on that and the results are compared with a human-defined groundtruth on drivers classification. The proposed framework is tested on a real dataset containing sampled car signals. While the different approaches show relevant differences in trip segment classification, the coherence of the final driver clustering results is surprisingly high.
Estimation of driving style in naturalistic highway traffic using maneuver transition probabilities
Transportation Research Part C: Emerging Technologies, 2017
Accurately estimating driving styles is crucial to designing useful driver assistance systems and vehicle control systems for autonomous driving that match how people drive. This paper presents a novel way to identify driving style not in terms of the durations or frequencies of individual maneuver states, but rather the transition patterns between them to see how they are interrelated. Driving behavior in highway traffic was categorized into 12 maneuver states, based on which 144 (12 Ă‚ 12) maneuver transition probabilities were obtained. A conditional likelihood maximization method was employed to extract typical maneuver transition patterns that could represent driving style strategies, from the 144 probabilities. Random forest algorithm was adopted to classify driving styles using the selected features. Results showed that transitions concerning five maneuver states-free driving, approaching, near following, constrained left and right lane changes-could be used to classify driving style reliably. Comparisons with traditional methods were presented and discussed in detail to show that transition probabilities between maneuvers were better at predicting driving style than traditional maneuver frequencies in behavioral analysis.
Assessing Social Driving Behavior
2019
Recent advances in Artificial Intelligence are making automated vehicles an ever closer reality. However, we should expect a period when full or partial autonomous vehicles and ordinary cars coexist, during which it would be essential to fully understand the cognitive processes used by ordinary people when driving. Our work attempt to progress in this direction, by designing a system for assessing when and why subjects resort to costly social processes, rather than using quick and automated reactions. In particular, it will be crucial to assess when drivers use mentalizing abilities, in addition to paying attention to other people by means of simpler automated sensorimotor control processes. In our experimental design we investigate the main precursors of mindreading, that is, eye contact and shared attention.
A Generative Car-following Model Conditioned On Driving Styles
ArXiv, 2021
Car-following (CF) modeling, an essential component in simulating human CF behaviors, has attracted increasing research interest in the past decades. This paper pushes the state of the art by proposing a novel generative hybrid CF model, which achieves high accuracy in characterizing dynamic human CF behaviors and is able to generate realistic human CF behaviors for any given observed or even unobserved driving style. Specifically, the ability of accurately capturing human CF behaviors is ensured by designing and calibrating an Intelligent Driver Model (IDM) with time-varying parameters. The reason behind is that such time-varying parameters can express both the inter-driver heterogeneity, i.e., diverse driving styles of different drivers, and the intra-driver heterogeneity, i.e., changing driving styles of the same driver. The ability of generating realistic human CF behaviors of any given observed driving style is achieved by applying a neural process (NP) based model. The ability...
Driving Style Recognition for Co-operative Driving: A Survey
This paper serves as a critical survey for automatic driving style recognition approaches and presents "work in progress" ideas that can be used for the development of intelligent context-adaptive driving assistance applications. Furthermore, a preliminary specification of a context-adaptive application that can be described by the following three steps is provided: at first, driving style is automatically classified into one out of a set of predefined classes that are learnt through historic driving and trip data; secondly, based on the driving style recognition a context-adaptive driving application is proposed; thirdly, eco-safe and co-operative driving behaviour can be rewarded by the system by introducing a serious game theoretic approach. While the focus of this paper lies on reviewing the state of the art for implementing the first step, providing the high-level specification of the two other steps offers valuable insight on the requirements of such collaborative driving application.
Measuring Similarity of Interactive Driving Behaviors Using Matrix Profile
2020 American Control Conference (ACC), 2020
Understanding multi-vehicle interactive behaviors with temporal sequential observations is crucial for autonomous vehicles to make appropriate decisions in an uncertain traffic environment. On-demand similarity measures are significant for autonomous vehicles to deal with massive interactive driving behaviors by clustering and classifying diverse scenarios. This paper proposes a general approach for measuring spatiotemporal similarity of interactive behaviors using a multivariate matrix profile technique. The key attractive features of the approach are its reduced space and time complexity, real- time online computing for streaming traffic data, and possible capability of leveraging hardware for parallel computation. The proposed approach is validated through automatically discovering similar interactive driving behaviors at intersections from sequential data.
Recognition of the Driving Style in Vehicle Drivers
Sensors
This paper presents three different approaches to recognize driving style based on a hierarchical-model. Specifically, it proposes a hierarchical model for the recognition of the driving style for advanced driver-assistance systems (ADAS) for vehicles. This hierarchical model for the recognition of the style of the car driving considers three aspects: the driver emotions, the driver state, and finally, the driving style itself. In this way, the proposed hierarchical pattern is composed of three levels of descriptors/features, one to recognize the emotional states, another to recognize the driver state, and the last one to recognize the driving style. Each level has a set of descriptors, which can be sensed in a real context. Finally, the paper presents three driving style recognition algorithms based on different paradigms. One is based on fuzzy logic, another is based on chronicles (a temporal logic paradigm), and the last is based on an algorithm that uses the idea of the recognit...
Analysis of driving style using self-organizing maps to analyze driver behavior
International Journal of Electrical and Computer Engineering (IJECE), 2024
Modern life is strongly associated with the use of cars, but the increase in acceleration speeds and their maneuverability leads to a dangerous driving style for some drivers. In these conditions, the development of a method that allows you to track the behavior of the driver is relevant. The article provides an overview of existing methods and models for assessing the functioning of motor vehicles and driver behavior. Based on this, a combined algorithm for recognizing driving style is proposed. To do this, a set of input data was formed, including 20 descriptive features: About the environment, the driver's behavior and the characteristics of the functioning of the car, collected using OBD II. The generated data set is sent to the Kohonen network, where clustering is performed according to driving style and degree of danger. Getting the driving characteristics into a particular cluster allows you to switch to the private indicators of an individual driver and considering individual driving characteristics. The application of the method allows you to identify potentially dangerous driving styles that can prevent accidents.
International Journal of Environmental Research and Public Health
Driving behavior is considered one of the most important factors in all road crashes, accounting for 40% of all fatal and serious accidents. Moreover, aggressive driving is the leading cause of traffic accidents that jeopardize human life and property. By evaluating data collected by various collection devices, it is possible to detect dangerous and aggressive driving, which is a huge step toward altering the situation. The utilization of driving data, which has arisen as a new tool for assessing the style of driving, has lately moved the concentration of aggressive recognition research. The goal of this study is to detect dangerous and aggressive driving profiles utilizing data gathered from motorcyclists and smartphone APPs that run on the Android operating system. A two-stage method is used: first, determine driver profile thresholds (rules), then differentiate between non-aggressive and aggressive driving and show the harmful conduct for producing the needed outcome. The data we...