Hormonal and ovarian responses to a 5-day progesterone treatment in anoestrous dairy cows in the third week post-partum (original) (raw)
Related papers
Influence of different doses of progesterone treatments on ovarian follicle status in beef cows
Animal Reproduction Science, 2006
To determine a dose of progesterone (P4) that allow ovarian follicular wave control, Aberdeen Angus cows were randomly assigned into four groups: T600 (n = 5), 600 mg of P4/day; T400 (n = 5), 400 mg of P4/day; T200 (n = 4), 200 mg of P4/day and Control (n = 4) (excipient only). Progesterone was injected from day 3 to 9 of estrous cycle. Ultrasonographies and blood sample collections were performed daily from day 2 to 10 and on day 15 of the estrous cycle. Additionally, an ultrasonographic study was conducted on day 13. Progesterone concentrations were different among all groups (P < 0.01). The diameter of the dominant follicle was greater for control than for T200, T400 and T600 groups (P < 0.01); there was no difference between T200 and T400 (P > 0.05), but they had a greater diameter follicle than the T600 group (P < 0.01). The growth rate of the dominant follicle between day 3 and 7 of estrous cycle was greater for control group (1.63 ± 0.3 mm day −1) than for T200 (0.56 ± 0.19 mm day −1 , P < 0.05), T400 (0.6 ± 0.23 mm day −1 , P < 0.05) and T600 (0.11 ± 0.13 mm day −1 , P < 0.01) groups. The mean number of class I follicles (3-4 mm) per day for the entire experimental period was less for the control group than for T200 (P < 0.05), T400 and T600 (P < 0.01) groups (3.7 ± 1.3; 5.3 ± 1.3; 6.6 ± 1.8 and 8.1 ± 1.9, respectively). The mean number for the T200 group was less than for T600 (P < 0.05) and similar for T400 and T600 groups (P > 0.05).
Theriogenology, 2001
The objective of this study was to compare the effects of administration of a single injection of progesterone (P4) and follicle aspiration on Day 7 of the estrous cycle on the timing and synchrony of follicular wave emergence, time of ovulation, and concentrations of P4, estradiol and FSH in Holstein cows. Twenty cows were assigned to 4 groups (n=5 cows per group) in a 2 by 2 factorial arrangement. Cows were treated on Day 7 (Day 0 = estrus) of the estrous cycle with either sham follicular aspiration and an oil vehicle administered intramuscularly (control), aspiration of ovarian follicles (aspiration), 200 mg ofP 4 im, or aspiration and 200 mg ofP 4 im (aspiration + P4)-On Day 11, PGF2a (25mg) was administered to all groups. Synchrony of ovulation was less variable in each of the treatment groups compared with the control group (P<0.05), whereas ovulation was delayed in cows in the P4 group (P<0.05). Day of follicular wave emergence was delayed in the cows of the P4 group compared with cows in the aspiration and aspiration + P4 groups (P<0.01), whereas variability in wave emergence was less among both groups of aspirated cows compared with the cows in the control group (P<0.01). More follicles 4 to 7 mm in diameter were detected in the 2 aspiration groups compared with the cows in the control and P4 group (P<0.05). No difference was detected among groups in the maximum concentration of FSH associated with follicular wave emergence. We conclude that both the administration of P4 and the aspiration of follicles on Day 7 of the estrous cycle improves the synchrony of ovulation when luteolysis is induced on Day 11 and results in similar concentrations of FSH at the time of follicular wave emergence, but the timing of wave emergence and the number of follicles post-emergence differ.
Brazilian Journal of Veterinary Research and Animal Science, 2018
The effect of injectable progesterone was evaluated along with estradiol benzoate (EB) on the fate of the dominant follicle (DF) present in the ovary at the beginning of low progesterone-based TAI protocol. All cattle were given 500 µg cloprostenol im (PGF; Schering-Plough Animal Health for Estrumate, Pointe-Claire, QC, Canada) twice, 11 d apart, and allocated into two groups: Estradiol group (E group, n = 11) and Estradiol-Progesterone group (EP group, n = 11). Ten days after the second PGF (Day 0), all cattle were given an intravaginal progesterone device with half progesterone concentration (Cue-Mate with a single pod containing 0.78 g progesterone). Concurrently, all cattle were given 1.5 mg im of estradiol benzoate in 3 mL of canola oil and PGF im on Day 0 of the protocol in a crossover design, in which each cow received both treatments. Cows in the EP group also received 100 mg im progesterone (Sigma) in 2 mL of canola oil. On Day 8, progesterone devices were removed and all c...
Theriogenology, 2005
The objectives of this study were to evaluate the effect using two doses of progesterone (P4) releasing devices in two different programs on reproductive performance of anestrous dairy cows. Cows (n = 1555) not detected in estrus by 10 d before the planned start of the seasonal breeding program and in which no CL was palpable were treated with an intravaginal P4-releasing device ('Single'; 1.56gofP4)oramodifieddevicewithtriplethenormalP4dose(′Triple′;1.56 g of P4) or a modified device with triple the normal P4 dose ('Triple'; 1.56gofP4)oramodifieddevicewithtriplethenormalP4dose(′Triple′;4.7 g of P4). The devices were in place for either 6 d ('Short') or 8 d ('Long'), with 1 mg estradiol benzoate (EB) given 24 h after device removal. The 'Long' program also included treatment with 2 mg EB at device insertion. The Long program resulted in a higher first service conception rate (RR = 1.18 (95% CI = 1.03-1.33); P = 0.02), but had no effect on the 28-d, 56-d or final pregnancy rate compared to the Short program. There were no effects of dose of P4 on any outcome. In conclusion, the Long compared to the Short program, but not the dose of P4, improved first service conception rates in anestrous cows. #
Reproduction, Fertility and Development, 2004
The objective was to characterize ovarian follicular dynamics in beef cows treated with a CIDR (Bioniche Animal Health; Belleville, Ontario, Canada) and an injection of estradiol-17β (E2), with or without progesterone (P4), late in the estrous cycle. Previously synchronized, non-lactating, crossbred beef cows (n=36) received a CIDR (Day 0) 16 to 18 days after ovulation and were randomly allocated to one of three treatment groups: no further treatment (Control, n=12), an injection of 5mg E2 (E2, n=12), or 5mg E2 plus 100mg P4 (E2P4, n=12; both from Sigma Chemical Co., St.Louis, MO, USA) i.m. in 2mL canola oil. On Day 7, CIDR were removed and cows received 500μg i.m. of cloprostenol (Estrumate, Schering Plough Animal Health, Pointe-Claire, Quebec, Canada). Ovaries were examined once daily by transrectal ultrasonography to detect ovarian follicle growth profiles, and determine the time of ovulation. Blood samples were taken daily for progesterone determination. Data were analyzed by AN...
International Journal of Livestock Research, 2017
Progesterone (P 4) is a steroid hormone primarily secreted by the Corpus luteum (CL). Adequate circulating P 4 concentration is essential for establishment and maintenance of pregnancy. Exposure to insufficient circulating level of P 4 during the growth of the ovulatory follicle is one of the important factors that affect fertility in high producing animals. P 4 has a negative feedback effect on LH secretion and it is believed that sub-luteal phase plasma P 4 concentrations result in elevated LH pulse-frequency. There is a linear trend for the number of LH pulses to decrease concurrently with the increase in P 4 concentrations as the estrous cycle progresses. These changes in LH pulse frequency are supposed to be associated with alterations in the process of follicular maturation and subsequent embryo survival. Beneficial effects of increased progesterone level during growth of dominant follicle or following AI can be documented from the current literature. P 4 concentration during the development of dominant follicle (DF) influences the fertility since the DF of first and second wave use to grow under different P 4 environment. Further a slight increase in circulating level of progesterone near the time of artificial insemination (AI) is highly detrimental for fertility. So, a control of follicle and CL development through utilization of various hormonal regimens is routinely done now a days to further enhance the reproductive performance of dairy animals. Taking into account above all facts, the present review highlights the progesterone manipulation strategies to improve bovine fertility.
Journal of reproduction …, 2000
Watson and Munro, 1984). Progesterone influences follicular growth indirectly by changing LH pulse frequency (Fortune, 1994). Previous studies have examined the effects of high concentrations of exogenous progesterone on bovine follicular growth. The doses used increased peripheral progesterone concentrations to luteal values of 3-6 ng ml-1. This increase exceeds the 0.5-1.0 ng ml-1 increase observed during the stressful stimulus of transport (Watson and Munro, 1984; Dobson et al., 1999b). Furthermore, in other studies, treatments were administered for a limited time (4-14 days) and removal of progesterone resulted in ovulation of the persistent follicle (Sirois and Fortune, 1990; Stock and Fortune, 1993; Mihm et al., 1994). Many of these other studies examined the effect of progesterone treatment on follicles emerging in the first
Effect of progesterone on some fertility performances in cattle
Mansoura Veterinary Medical Journal, 2019
Our experiment was conducted at a special dairy farm in Dakahlia Governorate between the periods (March-May 2018), This farm consisted of 400 Holestien cows; from the total of the animals only 210 lactating cows. The established experiment applied on 40 cows suffered from different types of anestrum detected by ultrasonography as follow (15 cows suffer from cystic ovary, 15 cows suffer from smooth inactive ovaries and 10 cows suffer from persist corpus luteum to study the effect of progesterone device insertion in dairy cattle and its effect in fertility. On day 0, cattle at random stage of estrous cycle received controlled internal drug release vaginal insert (CIDR).We left the CIDR in the vagina for seven days as we inject PGF2 on day 6 and remove the CIDR on day 7, blood samples were collected from 25 animals at zero day, 3 rd , 7 th and 9 th day from the tail vein, and then we follow the estrous and detected the estrus cow for AI and apply ultrasonography for pregnancy diagnosis after 30 day from insemination From this study it was concluded that the use of progesterone for 7 days +i.m. injection of PGF2α in the 7 th day can applied to dairy cattle to restart ovarian activity and it is an effective treatment for different infertility cases like cystic ovarian disease, persist corpus luteum and smooth in active ovaries. Moreover present study provides evidence for the importance of prior exposure to progesterone for cows to express estrous behavior, increase number of pregnant animals and increase conception rate.
Physiological and practical effects of progesterone on reproduction in dairy cattle
Animal, 2014
The discovery of progesterone (P4) and elucidation of the mechanisms of P4 action have an important place in the history of endocrinology and reproduction. Circulating P4 concentration is determined by a balance between P4 production, primarily by the corpus luteum (CL), and P4 metabolism, primarily by the liver. The volume of luteal tissue and number and function of large luteal cells are primary factors determining P4 production. Rate of P4 metabolism is generally determined by liver blood flow and can be of critical importance in determining circulating P4 concentrations, particularly in dairy cattle. During timed artificial insemination (AI) protocols, elevations in P4 are achieved by increasing number of CL by creating accessory CL or by supplementation with exogenous P4. Dietary manipulations can also alter circulating P4, although practical methods to apply these techniques have not yet been reported. Elevating P4 before the timed AI generally decreases double ovulation and i...