Probing collective Motions of Proteins and Hydration Dynamics in Aqueous Solutions by a Wide Range Dielectric Spectroscopy (original) (raw)

A Restrained Molecular Dynamics Empirical Approach for Generating a Small Set of Structures Representative of the Internal Flexibility of a Receptor

QSAR & Combinatorial Science, 2009

Multiple protein structure methods have been proposed for incorporating protein flexibility in molecular docking. One approach for docking ligands onto a rigid receptor is to use an ensemble of multiple rigid structures determined experimentally by X-ray or NMR spectroscopy or generated by numerical simulations. In this work we present an empirical method for generating a wide range of conformational states of a wobbling receptor using restrained Molecular Dynamics simulations (MD) and we propose a partitioning protocol for selecting a few representative conformations of the binding site from restrained MD sampling. Defining a large number of protein structures is computationally expensive when the MD simulations use an explicit solvent representation. For computational efficiency, solvent effect is therefore represented by an ensemble of restraints applied on a subset of specific atoms, using a distance-dependent permittivity function. The parameters used for the restraints and the permittivity are described. Several 100 ns restrained MD simulations are performed using different sets of parameters. In order to optimize the parameters, the results are compared to a 30 ns MD simulation in explicit solvent. Conformational sampling is speeded up by a factor of around 10-20 when performing restrained MD simulations. A partitioning k-means algorithm is applied to select representative structures of the receptor binding site. The methodology was evaluated on the ligand binding domain of the flexible Peroxysome Proliferator-Activated Receptor-g (PPARg).

Direct Detection of Structurally Resolved Dynamics in a Multiconformation Receptor−Ligand Complex

Journal of the American Chemical Society, 2011

Structure-based drug design relies on static protein structures despite significant evidence for the need to include protein dynamics as a serious consideration. In practice, dynamic motions are neglected because they are not understood well enough to model -a situation resulting from a lack of explicit experimental examples of dynamic receptor-ligand complexes. Here, we report highresolution details of pronounced ~1 ms timescale motions of a receptor-small molecule complex using a combination of NMR and X-ray crystallography. Large conformational dynamics in Escherichia coli dihydrofolate reductase are driven by internal switching motions of the drug-like, nanomolar-affinity inhibitor. Carr-Purcell-Meiboom-Gill relaxation dispersion experiments and NOEs revealed the crystal structure to contain critical elements of the high energy protein-ligand conformation. The availability of accurate, structurally resolved dynamics in a protein-ligand complex should serve as a valuable benchmark for modeling dynamics in other receptor-ligand complexes and prediction of binding affinities.

Incorporating receptor flexibility in the molecular design of protein interfaces

Protein Engineering Design and Selection, 2009

The success of antibody-based pharmaceuticals has led to a resurgence in interest in computational structure-based design. Most efforts to date have been on the redesign of existing interfaces. These efforts have mostly neglected the inherent flexibility of the receptor that is critical for binding. In this work, we extend on a previous study to perform a series of designs of protein binding interfaces by incorporating receptor flexibility using an ensemble of conformers collected from explicit-solvent molecular dynamics (MD) simulations. All designer complexes are subjected to 30 ns of MD in explicit solvent to assess for stability for a total of 480 ns of dynamics. This is followed by end-point free energy calculations whereby intermolecular potential energy, polar and non-polar solvation energy and entropy of ligand and receptor are subtracted from that of the complex and averaged over 320 snapshots collected from each of the 30 ns MD simulations. Our initial effort consisted of redesigning the interface of three well-studied complexes, namely barnase-barstar, lysozyme-antibody D1.3 and trypsin-BPTI. The design was performed with flexible backbone approach. MD simulations revealed that all three complexes remained stable. Interestingly, the redesigned trypsin-BPTI complex was significantly more favorable than the native complex. This was attributed to the favorable electrostatics and entropy that complemented the already favorable non-polar component. Another aspect of this work consisted of grafting the surface of three proteins, namely tenascin, CheY and MBP1 to bind to barnase, trypsin and lysozyme. The process was initially performed using fixed backbone, and more than 300 ns of the explicitsolvent MD simulation revealed some of the complexes to dissociate over the course of the trajectories, whereas others remained stable. Free energy calculations confirmed that the non-polar component of the free energy as computed by summing the van der Waals energy and the non-polar solvation energy was a strong predictor of stability. Four complexes (two stable and two unstable) were selected, and redesigned using multiple conformers collected from the MD simulation. The resulting designer systems were then immersed in explicit solvent and 30 ns of MD was carried out on each. Interestingly, those complexes that were initially stable remained stable, whereas one of the unstable complexes became stable following redesign with flexible backbone. Free energy calculations showed significant improvements in the affinity for most complexes, revealing that the use of multiple conformers in protein design may significantly enhance such efforts.

A molecular mechanics/grid method for evaluation of ligand-receptor interactions

Journal of Computational Chemistry, 1995

We present a computational method for prediction of the conformation of a ligand when bound to a macromolecular receptor. The method is intended for use in systems in which the approximate location of the binding site is known and no large-scale rearrangements of the receptor are expected upon formation of the complex. The ligand is initially placed in the vicinity of the binding site and the atomic motions of the ligand and binding site are explicitly simulated, with solvent represented by an implicit solvation model and using a grid representation for the bulk of the receptor protein. These two approximations make the method computationally efficient and yet maintain accuracy close to that of an all-atom calculation. For the benzamidine/trypsin system, we ran 100 independent simulations, in many of which the ligand settled into the low-energy conformation observed in the crystal structure of the complex. The energy of these conformations was lower than and well-separated from that of others sampled. Extensions of this method are also discussed.

Locating Large, Flexible Ligands on Proteins

Many biologically important ligands of proteins are large, flexible, and often charged molecules that bind to extended regions on the protein surface. It is infeasible or expensive to locate such ligands on proteins with standard methods such as docking or molecular dynamics (MD) simulation. The alternative approach proposed here is the scanning of a spatial and angular grid around the protein with smaller fragments of the large ligand. Energy values for complete grids can be computed efficiently with a well-known Fast Fourier Transform accelerated algorithm and a physically meaningful interaction model. We show that the approach can readily incorporate flexibility of protein and ligand. The energy grids (EGs) resulting from the ligand fragment scans can be transformed into probability distributions, and then directly compared to probability distributions estimated from MD simulations and experimental structural data. We test the approach on a diverse set of complexes between proteins and large, flexible ligands, including a complex of Sonic Hedgehog protein and heparin, three heparin sulfate substrates or non-substrates of an epimerase, a multi-branched supramolecular ligand that stabilizes a protein-peptide complex, and a flexible zwitterionic ligand that binds to a surface basin of a Kringle domain. In all cases the EG approach gives results that are in good agreement with experimental data or MD simulations.

Automated site preparation in physics-based rescoring of receptor ligand complexes

Proteins: Structure, Function, and Bioinformatics, 2009

Hydrogen atoms are not typically observable in xray crystal structures but inferring their locations is often important in structure-based drug design. In addition, protonation states of the protein can change in response to ligand binding, as can the orientations of OH groups, a subtle form of "induced fit". We implement and evaluate an automated procedure for optimizing polar hydrogens in protein binding sites in complex with ligands. Specifically, we apply the previously described ICDA algorithm (Proteins 66: 824-837), which assigns the ionization states of titratable residues, the amide orientations of Asn/Gln side chains, the imidazole ring orientation in His, and the orientations of OH/SH groups, in a unified algorithm. We test the utility of this method for identifying native-like ligand poses using 247 protein-ligand complexes from an established database of docked decoys. Pose selection is performed with a physics-based scoring function based on a molecular mechanics energy function and a Generalized Born implicit solvent model. The use of the ICDA receptor preparation protocol, implemented with no knowledge of the native ligand pose, increases the accuracy of pose selection significantly, with the average RMSD over all complexes decreasing from 2.7 to 1.5 Å when applying ICDA. Large improvements are seen for specific classes of binding sites with titratable groups, such as aspartyl proteases.

A new combined computational and NMR-spectroscopical strategy for the identification of additional conformational constraints of the bound ligand in an aprotic solvent

Chembiochem, 2000

This study documents the feasibility of switching to an aprotic medium in sugar receptor research. The solvent change offers additional insights into mechanistic details of receptor ± carbohydrate ligand interactions. If a receptor retained binding capacity in an aprotic medium, solvent-exchangeable protons of the ligand would not undergo transfer and could act as additional sensors, thus improving the level of reliability in conformational analysis. To probe this possibility, we first focused on hevein, the smallest lectin found in nature. The NMR-spectroscopic measurements verified complexation, albeit with progressively reduced affinity by more than 1.5 orders of magnitude, in mixtures of up to 50 % dimethyl sulfoxide (DMSO). Since hevein lacks the compact b-strand arrangement of other sugar receptors, such a structural motif may confer enhanced resistance to solvent exchange. Two settings of solid-phase activity assays proved this assumption for three types of a-and/or b-galactoside-binding proteins, that is, a human immunoglobulin G (IgG) subfraction, the mistletoe lectin, and a member of the galectin family of animal lectins. Computer-assisted calculations and NMR experiments also revealed no conspicuous impact of the solvent on the conformational properties of the tested ligands. To define all possible nuclear Overhauser effect (NOE) contacts in a certain conformation and to predict involvement of exchangeable protons, we established a new screening protocol applicable during a given molecular dynamics (MD) trajectory and calculated population densities of distinct contacts. Experimentally, transferred NOE (tr-NOE) experiments with IgG molecules and the disaccharide Gal'a1-3Galb1-R in DMSO as solvent disclosed that such an additional crosspeak, that is, Gal' OH2 ± Gal OH4, was even detectable for the bound ligand under conditions in which spin diffusion effects are suppressed. Further measurements with the plant lectin and galectins confirmed line broadening of ligand signals and gave access to characteristic crosspeaks in the aprotic solvent and its mixtures with water. Our combined biochemical, computational, and NMRspectroscopical strategy is expected to contribute notably to the precise elucidation of the geometry of ligands bound to compactly folded sugar receptors and of the role of water molecules in protein ± ligand (carbohydrate) recognition, with relevance to areas beyond the glycosciences.

Solvated Interaction Energy (SIE) for Scoring Protein−Ligand Binding Affinities. 1. Exploring the Parameter Space

Journal of Chemical Information and Modeling, 2007

We present a binding free energy function that consists of force field terms supplemented by solvation terms. We used this function to calibrate the solvation model along with the binding interaction terms in a self-consistent manner. The motivation for this approach was that the solute dielectric-constant dependence of calculated hydration gas-to-water transfer free energies is markedly different from that of binding free energies (J. Comput. Chem. 2003, 24, 954). Hence, we sought to calibrate directly the solvation terms in the context of a binding calculation. The five parameters of the model were systematically scanned to best reproduce the absolute binding free energies for a set of 99 protein-ligand complexes. We obtained a mean unsigned error of 1.29 kcal/mol for the predicted absolute binding affinity in a parameter space that was fairly shallow near the optimum. The lowest errors were obtained with solute dielectric values of Din = 20 or higher and scaling of the intermolecular van der Waals interaction energy by factors ranging from 0.03 to 0.15. The high apparent Din and strong van der Waals scaling may reflect the anticorrelation of the change in solvated potential energy and configurational entropy, that is, enthalpy-entropy compensation in ligand binding (Biophys. J. 2004, 87, 3035-3049). Five variations of preparing the protein-ligand data set were explored in order to examine the effect of energy refinement and the presence of bound water on the calculated results. We find that retaining water in the final protein structure used for calculating the binding free energy is not necessary to obtain good results; that is the continuum solvation model is sufficient. Virtual screening enrichment studies on estrogen receptor and thymidine kinase showed a good ability of the binding free energy function to recover true hits in a collection of decoys.

Accurate Detection of Protein:Ligand Binding Sites Using Molecular Dynamics Simulations

Structure, 2004

cessible to a probe sphere enclosed by the molecular surface of cavity lining atoms. CAST uses an ␣-shape-Indian Institute of Science Bangalore 560 012 based procedure to measure the cavity enclosed by the molecular surface of atoms that surround the cavity. India 2 Chemical Biology Unit However, VOIDOO and MS are often unable to detect cavities close to the protein surface or to identify surface Jawaharlal Nehru Center for Advanced Scientific Research grooves (Chakravarty et al., 2002). The MC procedure developed previously (Chakravarty et al., 2002) is a Jakkur P.O. Bangalore 560 004 monte-carlo-procedure-based approach that measures the Voronoi volume of a cluster of overlapping spheres India that map the cavity. Although it gives excellent results for interior cavities as well as cavities found near the surface, it performs poorly in detecting surface concavi-Summary