Allosteric regulation accompanied by oligomeric state changes of Trypanosoma brucei GMP reductase through cystathionine-β-synthase domain (original) (raw)

Novel Characteristics of Trypanosoma brucei Guanosine 5'-monophosphate Reductase Distinct from Host Animals

PLoS neglected tropical diseases, 2016

The metabolic pathway of purine nucleotides in parasitic protozoa is a potent drug target for treatment of parasitemia. Guanosine 5'-monophosphate reductase (GMPR), which catalyzes the deamination of guanosine 5'-monophosphate (GMP) to inosine 5'-monophosphate (IMP), plays an important role in the interconversion of purine nucleotides to maintain the intracellular balance of their concentration. However, only a few studies on protozoan GMPR have been reported at present. Herein, we identified the GMPR in Trypanosoma brucei, a causative protozoan parasite of African trypanosomiasis, and found that the GMPR proteins were consistently localized to glycosomes in T. brucei bloodstream forms. We characterized its recombinant protein to investigate the enzymatic differences between GMPRs of T. brucei and its host animals. T. brucei GMPR was distinct in having an insertion of a tandem repeat of the cystathionine β-synthase (CBS) domain, which was absent in mammalian and bacteria...

Crystal structures and inhibition of Trypanosoma brucei hypoxanthine–guanine phosphoribosyltransferase

Scientific Reports, 2016

Human African Trypanosomiasis (HAT) is a life-threatening infectious disease caused by the protozoan parasite, Trypanosoma brucei (Tbr). Due to the debilitating side effects of the current therapeutics and the emergence of resistance to these drugs, new medications for this disease need to be developed. One potential new drug target is 6-oxopurine phosphoribosyltransferase (PRT), an enzyme central to the purine salvage pathway and whose activity is critical for the production of the nucleotides (GMP and IMP) required for DNA/RNA synthesis within this protozoan parasite. Here, the first crystal structures of this enzyme have been determined, these in complex with GMP and IMP and with three acyclic nucleoside phosphonate (ANP) inhibitors. The Ki values for GMP and IMP are 30.5 μM and 77 μM, respectively. Two of the ANPs have Ki values considerably lower than for the nucleotides, 2.3 μM (with guanine as base) and 15.8 μM (with hypoxanthine as base). The crystal structures show that whe...

Allosteric Regulation of Trypanosoma bruceiRibonucleotide Reductase Studied in Vitro and in Vivo

Journal of Biological Chemistry, 1998

Trypanosoma brucei is the causative agent for African sleeping sickness. We have made in vitro and in vivo studies on the allosteric regulation of the trypanosome ribonucleotide reductase, a key enzyme in the production of dNTPs needed for DNA synthesis. Results with the isolated recombinant trypanosome ribonucleotide reductase showed that dATP specifically directs pyrimidine ribonucleotide reduction instead of being a general negative effector as in other related ribonucleotide reductases, whereas dTTP and dGTP directed GDP and ADP reduction, respectively. Pool measurements of NDPs, NTPs, and dNTPs in the cultivated bloodstream form of trypanosomes exposed to deoxyribonucleosides or inhibited by hydroxyurea confirmed our in vitro allosteric regulation model of ribonucleotide reductase. Interestingly, the trypanosomes had extremely low CDP and CTP pools, whereas the dCTP pool was comparable with that of other dNTPs. The trypanosome ribonucleotide reductase seems adapted to this situation by having a high affinity for the CDP/UDP-specific effector dATP and a high catalytic efficiency, K cat /K m , for CDP reduction. Thymidine and deoxyadenosine were readily taken up and phosphorylated to dTTP and dATP, respectively, the latter in a nonsaturating manner. This uncontrolled uptake of deoxyadenosine strongly inhibited trypanosome proliferation, a valuable observation in the search for new trypanocidal nucleoside analogues. Trypanosoma brucei is an African unicellular eukaryote that lives extracellularly in the mammalian bloodstream and central nervous system as well as in the guts and salivary glands of tsetse flies. Residing in its mammalian host, it causes a fatal disease called sleeping sickness. There is an urgent need to find new chemotherapy against this disease because the current ones are limited by toxicity as well as an increasing resistance among the trypanosomes (1). Ribonucleotide reductase (2) is a key enzyme in DNA synthesis because it catalyzes the reduction of ribonucleotides to deoxyribonucleotides, a reaction assisted by a protein-bound or a 5Ј-deoxyadenosyl cobalamin-derived free radical. Primarily based on the nature of this radical, the ribonucleotide reductases are divided into three classes where most of the eukaryotic and some of the prokaryotic ones belong to class I. The enzymes

Trypanosoma brucei ATPase subunit 6 mRNA bound to gA6-14 forms a conserved three-helical structure

RNA, 2008

T. brucei survival relies on the expression of mitochondrial genes, most of which require RNA editing to become translatable. In trypanosomes, RNA editing involves the insertion and deletion of uridylates, a developmentally regulated process directed by guide RNAs (gRNAs) and catalyzed by the editosome, a complex of proteins. The pathway for mRNA/gRNA complex formation and assembly with the editosome is still unknown. Work from our laboratory has suggested that distinct mRNA/gRNA complexes anneal to form a conserved core structure that may be important for editosome assembly. The secondary structure for the apocytochrome b (CYb) pair has been previously determined and is consistant with our model of a three-helical structure. Here, we used cross-linking and solution structure probing experiments to determine the structure of the ATPase subunit 6 (A6) mRNA hybridized to its cognate gA6-14 gRNA in different stages of editing. Our results indicate that both unedited and partially edited A6/gA6-14 pairs fold into a three-helical structure similar to the previously characterized CYb/ gCYb-558 pair. These results lead us to conclude that at least two mRNA/gRNA pairs with distinct editing sites and distinct primary sequences fold to a three-helical secondary configuration that persists through the first few editing events.

Characterization of adenine phosphoribosyltransferase (APRT) activity in Trypanosoma brucei brucei: Only one of the two isoforms is kinetically active

2021

Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a Neglected Tropical Disease endemic to 36 African countries, with approximately 70 million people currently at risk for infection. Current therapeutics are suboptimal due to toxicity, adverse side effects, and emerging resistance. Thus, both effective and affordable treatments are urgently needed. The causative agent of HAT is the protozoan Trypanosoma brucei ssp. Annotation of the T. brucei genome confirms previous observations that T. brucei is a purine auxotroph. Incapable of de novo purine synthesis, these protozoan parasites rely on purine phosphoribosyltransferases to salvage purines from their hosts for the synthesis of purine monophosphates. Complete and accurate genome annotations in combination with the identification and characterization of the catalytic activity of purine salvage enzymes enables the development of target-specific therapies in addition to providing a deeper understanding of purine m...

Unfolding of Triosephosphate Isomerase from Trypanosoma brucei: Identification of Intermediates and Insight into the Denaturation Pathway Using Tryptophan Mutants

Archives of Biochemistry and Biophysics, 2002

The unfolding of triosephosphate isomerase (TIM) from Trypanosoma brucei (TbTIM) induced by guanidine hydrochloride (GdnHCl) was characterized. In contrast to other TIMs, where unfolding is a two or three state process, TbTIM showed two intermediates. The solvent exposure of different regions of the protein in the unfolding process was characterized spectroscopically with mutant proteins in which tryptophans (W) were changed to phenlylalanines (F). The midpoints of the transitions measured by circular dichroism, intrinsic fluorescence, and catalytic activity, as well as the increase in 1-aniline 8-naphthalene sulfonate fluorescence, show that the native state was destabilized in the W12F and W12F/W193F mutants, relative to the wild-type enzyme. Using the hydrodynamic profile for the unfolding of a monomeric TbTIM mutant (RMM0-1TIM) measured by size-exclusion chromatography as a standard, we determined the association state of these intermediates: D*, a partially expanded dimer, and M*, a partially expanded monomeric intermediate. High-molecular-weight aggregates were also detected. At concentrations over 2.0 M GdnHCl, the hydrodynamic properties of TbTIM and RMM0-1TIM are the same, suggesting that the dimeric intermediate dissociates and the unfolding proceeds through the denaturation of an expanded monomeric intermediate. The analysis of the denaturation process of the TbTIM mutants suggests a sequence for the gradual exposure of W residues: initially the expansion of the native dimer to form D* affects the environments of W12 and W159. The dissociation of D* to M* and further unfolding of M* to U induces the exposure of W170. The role of protein concentration in the formation of intermediates and aggregates is discussed considering the irreversibility of this unfolding process. © 2002 Elsevier Science (USA)

Cloning and characterization of the R1 and R2 subunits of ribonucleotide reductase from Trypanosoma brucei

Proceedings of the National Academy of Sciences, 1997

Ribonucleotide reductase (RNR) catalyzes the rate limiting step in the de novo synthesis of deoxyribonucleotides by directly reducing ribonucleotides to the corresponding deoxyribonucleotides. To keep balanced pools of deoxyribonucleotides, all nonviral RNRs studied so far are allosterically regulated. Most eukaryotes contain a class I RNR, which is a heterodimer of two nonidentical subunits called proteins R1 and R2. We have isolated cDNAs encoding the R1 and R2 proteins from Trypanosoma brucei. The amino acid sequence identities with the mouse R1 and R2 subunits are 58% and 63%, respectively. Recombinant active trypanosome R1 and R2 proteins were expressed in Escherichia coli and purified. The R2 protein contains an iron-tyrosyl free radical center verified by EPR spectroscopy and iron analyses.

In cellulo crystallization of Trypanosoma brucei IMP dehydrogenase enables the identification of ATP and GMP as genuine co-factors

2020

Sleeping sickness is a fatal disease caused by the protozoan parasite Trypanosoma brucei (Tb). Inosine-5'-monophosphate dehydrogenase (IMPDH) has been proposed as a potential drug target, since it maintains the balance between guanylate deoxynucleotide and ribonucleotide levels that is pivotal for the parasite. Here we report the structure of TbIMPDH at room temperature utilizing free-electron laser radiation on crystals grown in living insect cells. The 2.80 Å resolution structure reveals the presence of ATP and GMP at the canonical sites of the Bateman domains, the latter in a so far unknown coordination mode. Consistent with previously reported IMPDH complexes harboring guanosine nucleotides at the second canonical site, TbIMPDH forms a compact oligomer structure, supporting a nucleotidecontrolled conformational switch that allosterically modulates the catalytic activity. The oligomeric TbIMPDH structure we present here reveals the potential of in cellulo crystallization to identify genuine allosteric co-factors from a natural reservoir of specific compounds.

Crystal structure of the small GTPase Arl6/BBS3 from Trypanosoma brucei

Protein Science, 2013

Arl6/BBS3 is a small GTPase, mutations in which are implicated in the human ciliopathy Bardet-Biedl Syndrome (BBS). Arl6 is proposed to facilitate the recruitment of a large protein complex known as the BBSome to the base of the primary cilium, mediating specific trafficking of molecules to this important sensory organelle. Orthologues of Arl6 and the BBSome core subunits have been identified in the genomes of trypanosomes. Flagellum function and motility are crucial to the survival of Trypanosoma brucei, the causative agent of human African sleeping sickness, in the human bloodstream stage of its lifecycle and so the function of the BBSome proteins in trypanosomes warrants further study. RNAi knockdown of T. brucei Arl6 (TbArl6) has recently been shown to result in shortening of the trypanosome flagellum. Here we present the crystal structure of TbArl6 with the bound non-hydrolysable GTP analog GppNp at 2.0 Å resolution and highlight important differences between the trypanosomal and human proteins. Analysis of the TbArl6 active site confirms that it lacks the key glutamine that activates the nucleophile during GTP hydrolysis in other small GTPases. Furthermore, the trypanosomal proteins are significantly shorter at their N-termini suggesting a different method of membrane insertion compared to humans. Finally, analysis of sequence conservation suggests two surface patches that may be important for protein-protein interactions. Our structural analysis thus provides the basis for future biochemical characterisation of this important family of small GTPases.

Identification of the HIT-45 protein from Trypanosoma brucei as an FHIT protein/dinucleoside triphosphatase: Substrate specificity studies on the recombinant and endogenous proteins

RNA, 2009

A new member of the FHIT protein family, designated HIT-45, has been identified in the African trypanosome Trypanosoma brucei. Recombinant HIT-45 proteins were purified from trypanosomal and bacterial protein expression systems and analyzed for substrate specificity using various dinucleoside polyphosphates, including those that contain the 59-mRNA cap, i.e., m 7 GMP. This enzyme exhibited typical dinucleoside triphosphatase activity (EC 3.6.1.29), having its highest specificity for diadenosine triphosphate (ApppA). However, the trypanosome enzyme contains a unique amino-terminal extension, and hydrolysis of cap dinucleotides with monomethylated guanosine or dimethylated guanosine always yielded m 7 GMP (or m 2,7 GMP) as one of the reaction products. Interestingly, m 7 Gpppm 3 N6, N6, 29O A was preferred among the methylated substrates. This hypermethylated dinucleotide is unique to trypanosomes and may be an intermediate in the decay of cap 4, i.e., m 7 Gpppm 3 N6, N6, 29O Apm 29O Apm 29O Cpm 2 N3, 29O U, that occurs in these organisms.