Breast Cancer Cell Invasion into a Three Dimensional Tumor-Stroma Microenvironment (original) (raw)

Tumor spheroid invasion in epidermal growth factor gradients revealed by a 3D microfluidic device

Physical Biology

Epidermal growth factor (EGF), a potent cytokine, is known to promote tumor invasion both in vivo and in vitro. Previously, we observed that single breast tumor cells (MDA-MB-231 cell line) embedded within a 3D collagen matrix displayed enhanced motility but no discernible chemotaxis in the presence of linear EGF gradients using a microfluidic platform. Inspired by a recent theoretical development that clustered mammalian cells respond differently to chemical gradients than single cells, we studied tumor spheroid invasion within a 3D extracellular matrix (ECM) in the presence of EGF gradients. We found that EGF gradients promoted tumor cell detachment from the spheroid core, and the position of the tumor spheroid core showed a mild chemotactic response towards the EGF gradients. For those tumor cells detached from the spheroids, they showed an enhanced motility response in contrast to previous experimental results using single cells embedded within an ECM. No discernible chemotactic...

A 3D Microfluidic Model to Recapitulate Cancer Cell Migration and Invasion

Bioengineering

We have developed a microfluidic-based culture chip to simulate cancer cell migration and invasion across the basement membrane. In this microfluidic chip, a 3D microenvironment is engineered to culture metastatic breast cancer cells (MX1) in a 3D tumor model. A chemo-attractant was incorporated to stimulate motility across the membrane. We validated the usefulness of the chip by tracking the motilities of the cancer cells in the system, showing them to be migrating or invading (akin to metastasis). It is shown that our system can monitor cell migration in real time, as compare to Boyden chambers, for example. Thus, the chip will be of interest to the drug-screening community as it can potentially be used to monitor the behavior of cancer cell motility, and, therefore, metastasis, in the presence of anti-cancer drugs.

A microfluidic platform for modeling metastatic cancer cell matrix invasion

Biofabrication, 2017

Invasion of the extracellular matrix is a critical step in the colonization of metastatic tumors. The invasion process is thought to be driven by both chemokine signaling and interactions between invading cancer cells and physical components of the metastatic niche, including endothelial cells that line capillary walls and serve as a barrier to both diffusion and invasion of the underlying tissue. Transwell chambers, a tool for generating artificial chemokine gradients to induce cell migration, have facilitated recent work to investigate the chemokine contributions to matrix invasion. These chambers, however, are poorly designed for imaging, which limits their use in investigating the physical cell-cell and cell-matrix interactions driving matrix invasion. Microfluidic devices offer a promising model in which the invasion process can be imaged. Many current designs, however, have limited surface areas and possess intricate geometries that preclude the use of standard staining protoc...

Tumor spheroid chemotaxis in epidermal growth factor gradients revealed by a 3D microfluidic platform

Bulletin of the American Physical Society, 2021

Epidermal growth factor (EGF), a potent cytokine, is known to promote tumor invasion both in vivo and in vitro. Previously, we observed that single breast tumor cells (MDA-MB-231 cell line) embedded within a 3D collagen matrix displayed enhanced motility but no discernible chemotaxis in the presence of linear EGF gradients using a microfluidic platform. Inspired by a recent theoretical development that clustered mammalian cells respond differently to chemical gradients than single cells, we studied tumor spheroid invasion within a 3D extracellular matrix (ECM) in the presence of EGF gradients. We found that EGF gradients promoted tumor cell detachment from the spheroid core, and the position of the tumor spheroid core showed a mild chemotactic response towards the EGF gradients. For those tumor cells detached from the spheroids, they showed an enhanced chemokinesis response in contrast to previous experimental results using single cells embedded within an ECM. No discernible chemotactic response towards the EGF gradients was found for the cells outside the spheroid core. This work demonstrates that a cluster of tumor cells responds differently than single tumor cells towards EGF gradients and highlights the importance of a tumor spheroid platform for chemotaxis studies.

A novel method to understand tumor cell invasion: integrating extracellular matrix mimicking layers in microfluidic chips by selective curing

A major challenge in studying tumor cell invasion into its surrounding tissue is to identify the contribution of individual factors in the tumor microenvironment (TME) to the process. One of the important elements of the TME is the fibrous extracellular matrix (ECM) which is known to influence cancer cell invasion, but exactly how remains unclear. Therefore, there is a need for new models to unravel mechanisms behind the tumor-ECM interaction. In this article, we present a new microfabrication method, called selective curing, to integrate ECM-mimicking layers between two microfluidic channels. This method enables us to study the effect of 3D matrices with controlled architecture , beyond the conventionally used hydrogels, on cancer invasion in a controlled environment. As a proof of p r i n c i p l e , w e h a v e i n t e g r a t e d t w o e l e c t r o s p u n Polycaprolactone (PCL) matrices with different fiber diameters in one chip. We then studied the 3D migration of MDA-MB-231 breast cancer cells into the matrices under the influence of a chemotactic gradient. The results show that neither the invasion distance nor the general cell morphology is affected significantly by the difference in fiber size of these matrices. The cells however do produce longer and more protrusions in the matrix with smaller fiber size. This microfluidic system enables us to study the influence of other factors in the TME on cancer development as well as other biological applications as it provides a controlled compartmentalized environment compatible with cell culturing.

3D Hydrogel-Based Microwell Arrays As A Tumor Microenvironment Model To Study Breast Cancer Growth

Biomedical materials (Bristol, England), 2017

The tumor microenvironment (TME) is distinctly heterogeneous and is involved in tumor growth, metastasis, and drug resistance. Mimicking this diverse microenvironment is essential for understanding tumor growth and metastasis. Despite the substantial scientific progress made with traditional cell culture methods, microfabricated three-dimensional (3D) cell cultures that can be precisely controlled to mimic the changes occur in the TME over tumor progression are necessary for simulating organ-specific TME in vitro. In this research, to simulate the breast cancer TME, microwell arrays of defined geometry and dimensions were fabricated using photo-reactive hydrogels for cancer cell line and primary explant tissue culture. Microwell arrays fabricated from 4-arm polyethylene glycol (PEG) acrylate and methacrylated gelatin (GelMA) with different degrees of methacrylation for controlled cell-matrix interactions and tunable stiffness was used to create a platform for studying the effects of...

A human organotypic microfluidic tumor model permits investigation of the interplay between patient-derived fibroblasts and breast cancer cells

Cancer Research

Tumor-stroma interactions significantly influence cancer cell metastasis and disease progression. These interactions are partly comprised of the cross-talk between tumor and stromal fibroblasts, but the key molecular mechanisms within the cross-talk that govern cancer invasion are still unclear. Here, we adapted our previously developed microfluidic device as a 3D in vitro organotypic model to mechanistically study tumorstroma interactions by mimicking the spatial organization of the tumor microenvironment on a chip. We cocultured breast cancer and patient-derived fibroblast cells in 3D tumor and stroma regions, respectively, and combined functional assessments, including cancer cell migration, with transcriptome profiling to unveil the molecular influence of tumor-stroma cross-talk on invasion. This led to the observation that cancer-associated fibroblasts (CAF) enhanced invasion in 3D by inducing expression of a novel gene of interest, glycoprotein nonmetastatic B (GPNMB), in breast cancer cells, resulting in increased migration speed. Importantly, knockdown of GPNMB blunted the influence of CAF on enhanced cancer invasion. Overall, these results demonstrate the ability of our model to recapitulate patient-specific tumor microenvironments to investigate the cellular and molecular consequences of tumor-stroma interactions. Significance: An organotypic model of tumor-stroma interactions on a microfluidic chip reveals that CAFs promote invasion by enhancing expression of GPNMB in breast cancer cells.

Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis

PloS one, 2017

Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a support...

A Novel Three-Dimensional Platform to Investigate Neoangiogenesis, Transendothelial Migration, and Metastasis of MDAMB-231 Breast Cancer Cells

Plastic and reconstructive surgery, 2016

A crucial step in the progression of cancer involves the transendothelial migration of tumor cells into the bloodstream and invasion at distant sites. Most in vitro models of malignant cell behavior do not account for the presence of and interaction with vascular cells. Three-dimensional platforms to further explore the factors responsible for metastatic cellular behavior are under intensive investigation. Hydrogels with encapsulated MDAMB-231 breast cancer cells were fabricated with a central microchannel. The microchannel was lined with a co-culture of human umbilical vein endothelial cells and human aortic smooth muscle cells. For comparison, co-culture-seeded microchannels without breast cancer cells (MDAMB-negative) were fabricated. After 7 and 14 days, the endoluminal lining of encapsulated MDAMB-231 co-culture-seeded microchannels demonstrated aberrant endothelial cell and smooth muscle cell organization and breast cancer cell transendothelial migration. MDAMB-231 cells perfo...