Intermediate Layer Optimization for Inverse Problems using Deep Generative Models (original) (raw)
Related papers
Compressible Latent-Space Invertible Networks for Generative Model-Constrained Image Reconstruction
2021
There remains an important need for the development of image reconstruction methods that can produce diagnostically useful images from undersampled measurements. In magnetic resonance imaging (MRI), for example, such methods can facilitate reductions in data-acquisition times. Deep learning-based methods hold potential for learning object priors or constraints that can serve to mitigate the effects of data-incompleteness on image reconstruction. One line of emerging research involves formulating an optimization-based reconstruction method in the latent space of a generative deep neural network. However, when generative adversarial networks (GANs) are employed, such methods can result in image reconstruction errors if the sought-after solution does not reside within the range of the GAN. To circumvent this problem, in this work, a framework for reconstructing images from incomplete measurements is proposed that is formulated in the latent space of invertible neural network-based gene...
Solving Inverse Computational Imaging Problems using Deep Pixel-level Prior
IEEE Transactions on Computational Imaging, 2018
Signal reconstruction is a challenging aspect of computational imaging as it often involves solving ill-posed inverse problems. Recently, deep feed-forward neural networks have led to state-of-the-art results in solving various inverse imaging problems. However, being task specific, these networks have to be learned for each inverse problem. On the other hand, a more flexible approach would be to learn a deep generative model once and then use it as a signal prior for solving various inverse problems. We show that among the various state of the art deep generative models, autoregressive models are especially suitable for our purpose for the following reasons. First, they explicitly model the pixel level dependencies and hence are capable of reconstructing low-level details such as texture patterns and edges better. Second, they provide an explicit expression for the image prior which can then be used for MAP based inference along with the forward model. Third, they can model long range dependencies in images which make them ideal for handling global multiplexing as encountered in various compressive imaging systems. We demonstrate the efficacy of our proposed approach in solving three computational imaging problems: Single Pixel Camera (SPC), LiSens and FlatCam. For both real and simulated cases, we obtain better reconstructions than the state-of-the-art methods in terms of perceptual and quantitative metrics.
GAN-Based Projector for Faster Recovery With Convergence Guarantees in Linear Inverse Problems
2019 IEEE/CVF International Conference on Computer Vision (ICCV), 2019
A Generative Adversarial Network (GAN) with generator G trained to model the prior of images has been shown to perform better than sparsity-based regularizers in illposed inverse problems. Here, we propose a new method of deploying a GAN-based prior to solve linear inverse problems using projected gradient descent (PGD). Our method learns a network-based projector for use in the PGD algorithm, eliminating expensive computation of the Jacobian of G. Experiments show that our approach provides a speed-up of 60-80× over earlier GAN-based recovery methods along with better accuracy. Our main theoretical result is that if the measurement matrix is moderately conditioned on the manifold range(G) and the projector is δ-approximate, then the algorithm is guaranteed to reach O(δ) reconstruction error in O(log(1/δ)) steps in the low noise regime. Additionally, we propose a fast method to design such measurement matrices for a given G. Extensive experiments demonstrate the efficacy of this method by requiring 5-10× fewer measurements than random Gaussian measurement matrices for comparable recovery performance. Because the learning of the GAN and projector is decoupled from the measurement operator, our GAN-based projector and recovery algorithm are applicable without retraining to all linear inverse problems, as confirmed by experiments on compressed sensing, super-resolution, and inpainting.
Solving Linear Inverse Problems Using Gan Priors: An Algorithm with Provable Guarantees
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018
In recent works, both sparsity-based methods as well as learningbased methods have proven to be successful in solving several challenging linear inverse problems. However, sparsity priors for natural signals and images suffer from poor discriminative capability, while learning-based methods seldom provide concrete theoretical guarantees. In this work, we advocate the idea of replacing hand-crafted priors, such as sparsity, with a Generative Adversarial Network (GAN) to solve linear inverse problems such as compressive sensing. In particular, we propose a projected gradient descent (PGD) algorithm for effective use of GAN priors for linear inverse problems, and also provide theoretical guarantees on the rate of convergence of this algorithm. Moreover, we show empirically that our algorithm demonstrates superior performance over an existing method of leveraging GANs for compressive sensing.
Adversarially learned iterative reconstruction for imaging inverse problems
2021
In numerous practical applications, especially in medical image reconstruction, it is often infeasible to obtain a large ensemble of ground-truth/measurement pairs for supervised learning. Therefore, it is imperative to develop unsupervised learning protocols that are competitive with supervised approaches in performance. Motivated by the maximum-likelihood principle, we propose an unsupervised learning framework for solving ill-posed inverse problems. Instead of seeking pixel-wise proximity between the reconstructed and the ground-truth images, the proposed approach learns an iterative reconstruction network whose output matches the ground-truth in distribution. Considering tomographic reconstruction as an application, we demonstrate that the proposed unsupervised approach not only performs on par with its supervised variant in terms of objective quality measures, but also successfully circumvents the issue of over-smoothing that supervised approaches tend to suffer from. The impro...
Image-Adaptive GAN Based Reconstruction
Proceedings of the AAAI Conference on Artificial Intelligence, 2020
In the recent years, there has been a significant improvement in the quality of samples produced by (deep) generative models such as variational auto-encoders and generative adversarial networks. However, the representation capabilities of these methods still do not capture the full distribution for complex classes of images, such as human faces. This deficiency has been clearly observed in previous works that use pre-trained generative models to solve imaging inverse problems. In this paper, we suggest to mitigate the limited representation capabilities of generators by making them image-adaptive and enforcing compliance of the restoration with the observations via back-projections. We empirically demonstrate the advantages of our proposed approach for image super-resolution and compressed sensing.
IEEE Transactions on Pattern Analysis and Machine Intelligence
GAN inversion aims to invert a given image back into the latent space of a pretrained GAN model so that the image can be faithfully reconstructed from the inverted code by the generator. As an emerging technique to bridge the real and fake image domains, GAN inversion plays an essential role in enabling pretrained GAN models, such as StyleGAN and BigGAN, for use for real image editing applications. Moreover, GAN inversion also provides insights into the interpretation of the latent space of GANs and how realistic images can be generated. In this paper, we provide an overview of GAN inversion with a focus on recent algorithms and applications. We cover important techniques of GAN inversion and their applications in image restoration and image manipulation. We further elaborate on some trends and challenges for future research. A curated list of GAN inversion methods, datasets, and other related information can be found at github.com/weihaox/awesome-gan-inversion.
From Classical to Unsupervised-Deep-Learning Methods for Solving Inverse Problems in Imaging
2020
In this thesis, we propose new algorithms to solve inverse problems in the context of biomedical images. Due to ill-posedness, solving these problems require some prior knowledge of the statistics of the underlying images. The traditional algorithms, in the field, assume prior knowledge related to smoothness or sparsity of these images. Recently, they have been outperformed by the second generation algorithms which harness the power of neural networks to learn required statistics from training data. Even more recently, last generation deep-learning-based methods have emerged which require neither training nor training data. This thesis devises algorithms which progress through these generations. It extends these generations to novel formulations and applications while bringing more robustness. In parallel, it also progresses in terms of complexity, from proposing algorithms for problems with 1D data and an exact known forward model to the ones with 4D data and an unknown parametric forward model. We introduce five main contributions. The last three of them propose deep-learning-based latest-generation algorithms that require no prior training. 1) We develop algorithms to solve the continuous-domain formulation of inverse problems with both classical Tikhonov and total-variation regularizations. We formalize the problems, characterize the solution set, and devise numerical approaches to find the solutions. 2) We propose an algorithm that improves upon end-to-end neural-network-based second generation algorithms. In our method, a neural network is first trained as a projector on a training set, and is then plugged in as a projector inside the projected gradient descent (PGD). Since the problem is nonconvex, we relax the PGD to ensure convergence to a local minimum under some constraints. This method outperforms all the previous generation algorithms for Computed Tomography (CT). 3) We develop a novel time-dependent deep-image-prior algorithm for modalities that involve a temporal sequence of images. We parameterize them as the output of an untrained neural network fed with a sequence of latent variables. To impose temporal directionality, the latent variables are assumed to lie on a 1D manifold. The network is then tuned to minimize the data fidelity. We obtain state-of-the-art results in dynamic magnetic resonance imaging (MRI) and even recover intra-frame images. iii Abstract 4) We propose a novel reconstruction paradigm for cryo-electron-microscopy (CryoEM) called CryoGAN. Motivated by generative adversarial networks (GANs), we reconstruct a biomolecule's 3D structure such that its CryoEM measurements resemble the acquired data in a distributional sense. The algorithm is pose-or-likelihood-estimation-free, needs no ab initio, and is proven to have a theoretical guarantee of recovery of the true structure. 5) We extend CryoGAN to reconstruct continuously varying conformations of a structure from heterogeneous data. We parameterize the conformations as the output of a neural network fed with latent variables on a low-dimensional manifold. The method is shown to recover continuous protein conformations and their energy landscape.
End-to-end reconstruction meets data-driven regularization for inverse problems
2021
We propose an unsupervised approach for learning end-to-end reconstruction operators for ill-posed inverse problems. The proposed method combines the classical variational framework with iterative unrolling, which essentially seeks to minimize a weighted combination of the expected distortion in the measurement space and the Wasserstein-1 distance between the distributions of the reconstruction and ground-truth. More specifically, the regularizer in the variational setting is parametrized by a deep neural network and learned simultaneously with the unrolled reconstruction operator. The variational problem is then initialized with the reconstruction of the unrolled operator and solved iteratively till convergence. Notably, it takes significantly fewer iterations to converge, thanks to the excellent initialization obtained via the unrolled operator. The resulting approach combines the computational efficiency of end-to-end unrolled reconstruction with the wellposedness and noise-stabi...
Deep Generative Adversarial Networks for Compressed Sensing Automates MRI
arXiv (Cornell University), 2017
Magnetic resonance image (MRI) reconstruction is a severely ill-posed linear inverse task demanding time and resource intensive computations that can substantially trade off accuracy for speed in real-time imaging. In addition, state-of-the-art compressed sensing (CS) analytics are not cognizant of the image diagnostic quality. To cope with these challenges we put forth a novel CS framework that permeates benefits from generative adversarial networks (GAN) to train a (low-dimensional) manifold of diagnostic-quality MR images from historical patients. Leveraging a mixture of least-squares (LS) GANs and pixel-wise 1 cost, a deep residual network with skip connections is trained as the generator that learns to remove the aliasing artifacts by projecting onto the manifold. LSGAN learns the texture details, while 1 controls the high-frequency noise. A multilayer convolutional neural network is then jointly trained based on diagnostic quality images to discriminate the projection quality. The test phase performs feed-forward propagation over the generator network that demands a very low computational overhead. Extensive evaluations are performed on a large contrast-enhanced MR dataset of pediatric patients. In particular, images rated based on expert radiologists corroborate that GANCS retrieves high contrast images with detailed texture relative to conventional CS, and pixel-wise schemes. In addition, it offers reconstruction under a few milliseconds, two orders of magnitude faster than state-of-the-art CS-MRI schemes. * The authors are with the Stanford University, Departments of Electrical Engineering 1 , Radiology 2 , Radiation Oncology 3 , and Computer Science 4 .