Electrocatalytic and Photocatalytic Conversion of CO 2 to Methanol using Ruthenium Complexes with Internal Pyridyl Cocatalysts (original) (raw)

Inorganic Chemistry, 2014

Abstract

The ruthenium complexes [Ru(phen)2(ptpbα)](2+) (Ruα) and [Ru(phen)2(ptpbβ)](2+) (Ruβ), where phen =1,10-phenanthroline ; ptpbα = pyrido[2',3':5,6]pyrazino[2,3-f][1,10]phenanthroline; ptpbβ = pyrido[3',4':5,6]pyrazino[2,3-f][1,10]phenanthroline, are shown as electrocatalysts and photocatalysts for CO2 reduction to formate, formaldehyde, and methanol. Photochemical activity of both complexes is lost in water but is retained in 1 M H2O in DMF. Controlled current electrolysis of a solution of Ruβ in CO2 saturated DMF:H2O (1 M) yields predominantly methanol over a 6 h period at ∼ -0.60 V versus Ag/AgCl, with traces of formaldehyde. After this time, the potential jumped to -1.15 V producing both methanol and CO as products. Irradiation of Ruβ in a solution of DMF:H2O (1 M) containing 0.2 M TEA (as the sacrificial reductant) yields methanol, formaldehyde, and formate. Identifications of all of the relevant redox and protonated states of the respective complexes were obtained by a combination of voltammetry and differential reflectance measurements. Spectroelectrochemistry was particularly useful to probe the photochemical and electrochemical reduction mechanisms of both complexes as well as the complexes speciation in the absence and presence of CO2.

David Boston hasn't uploaded this paper.

Let David know you want this paper to be uploaded.

Ask for this paper to be uploaded.