Facile integration of ordered nanowires in functional devices (original) (raw)

2015, Sensors and Actuators B: Chemical

AI-generated Abstract

The integration of one dimensional (1D) nanostructures of non-industry-standard semiconductors in functional devices following bottom-up approaches is still an open challenge that hampers the exploitation of all their potential. Here, we present a simple approach to integrate metal oxide nanowires in electronic devices based on controlled dielectrophoretic positioning together with proof of concept devices that corroborate their functionality. The method is flexible enough to manipulate nanowires of different sizes and compositions exclusively using macroscopic solution-based techniques in conventional electrode designs. Our results show that fully functional devices, which display all the advantages of single-nanowire gas sensors, photodetectors, and even field-effect transistors, are thus obtained right after a direct assembly step without subsequent metallization processing. This paves the way to low cost, high throughput manufacturing of general-purpose electronic devices based on non-conventional and high quality 1D nanostructures driving up many options for high performance and new low energy consumption devices.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.