The Effect of Disease-Modifying Drugs on Brain Atrophy in Relapsing-Remitting Multiple Sclerosis: A Meta-Analysis (original) (raw)

Abstract

Background The quantification of brain atrophy in relapsing-remitting multiple sclerosis (RRMS) may serve as a marker of disease progression and treatment response. We compared the association between first-line (FL) or second-line (SL) disease-modifying drugs (DMDs) and brain volume changes over time in RRMS. Materials and Methods We reviewed clinical trials in RRMS between January 1, 1995 and June 1, 2014 that assessed the effect of DMDs and reported data on brain atrophy in Medline, Embase, the Cochrane database and meeting abstracts. First, we designed a meta-analysis to directly compare the percentage brain volume change (PBVC) between FLDMDs and SLDMDs at 24 months. Second, we conducted an observational and longitudinal linear regression analysis of a 48-month follow-up period. Sensitivity analyses considering PBVC between 12 and 48 months were also performed. Results Among the 272 studies identified, 117 were analyzed and 35 (18,140 patients) were included in the analysis. Based on the meta-analysis, atrophy was greater for the use of an FLDMD than that of an SLDMD at 24 months (primary endpoint mean difference,-0.86; 95% confidence interval:-1.57-0.15; P = 0.02). Based on the linear regression analysis, the annual PBVC significantly differed between SLDMDs and placebo (-0.27%/y and-0.50%/y, respectively, P = 0.046) but not between FLDMDs (-0.33%/y) and placebo (P = 0.11) or between FLDMDs and SLDMDs (P = 0.49). Based on sensitivity analysis, the annual PBVC was reduced for SLDMDs compared with placebo (-0.14%/y and-0.56%/y, respectively, P<0.001) and FLDMDs (-0.46%/y, P<0.005), but no difference was detected between FLDMDs and placebo (P = 0.12).

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (41)

  1. Sormani MP, Signori A, Siri P, De Stefano N. Time to first relapse as an endpoint in multiple sclerosis clinical trials. Mult Scler. 2013; 19: 466-474. doi: 10.1177/1352458512457841 PMID: 22914849
  2. van den Elskamp IJ, Knol DL, Uitdehaag BMJ, Barkhof F. Modeling MR imaging enhancing-lesion vol- umes in multiple sclerosis: application in clinical trials. AJNR Am J Neuroradiol. 2011; 32: 2093-2097. doi: 10.3174/ajnr.A2691 PMID: 22051810
  3. Barkhof F. The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol. 2002; 15: 239-245. PMID: 12045719
  4. Sormani MP, De Stefano N. MRI measures should be a primary outcome endpoint in Phase III random- ized, controlled trials in multiple sclerosis: yes. Mult Scler. 2014; 20: 280-281. doi: 10.1177/ 1352458513507360 PMID: 24589685
  5. De Stefano N, Giorgio A, Battaglini M, Rovaris M, Sormani MP, Barkhof F, et al. Assessing brain atro- phy rates in a large population of untreated multiple sclerosis subtypes. Neurology. 2010; 74: 1868- 1876. doi: 10.1212/WNL.0b013e3181e24136 PMID: 20530323
  6. Arnold DL, De Stefano N. Preventing brain atrophy should be the gold standard of effective therapy in multiple sclerosis (after the first year of treatment): Commentary. Mult Scler. 2013; 19: 1007-1008. doi: 10.1177/1352458513490550 PMID: 23818020
  7. Rudick RA, Fisher E. Preventing brain atrophy should be the gold standard of effective therapy in MS (after the first year of treatment): Yes. Mult Scler. 2013; 19: 1003-1004. doi: 10.1177/ 1352458513482385 PMID: 23818018
  8. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009; 62: e1-34. doi: 10.1016/j.jclinepi.2009.06.006
  9. Higgins JPT, Altman DG, Gøtzsche PC, Jüni P, Moher D, Oxman AD, et al. The Cochrane Collabora- tion's tool for assessing risk of bias in randomised trials. BMJ. 2011; 343: d5928. doi: 10.1136/bmj. d5928 PMID: 22008217
  10. Vidal-Jordana A, Sastre-Garriga J, Pérez-Miralles F, Tur C, Tintoré M, Horga A, et al. Early brain pseu- doatrophy while on natalizumab therapy is due to white matter volume changes. Mult Scler. 2013; 19: 1175-1181. doi: 10.1177/1352458512473190 PMID: 23319072
  11. Rudick RA, Fisher E, Lee JC, Simon J, Jacobs L. Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group. Neu- rology. 1999; 53: 1698-1704. PMID: 10563615
  12. Smith SM, De Stefano N, Jenkinson M, Matthews PM. Normalized accurate measurement of longitudi- nal brain change. J Comput Assist Tomogr. 2001; 25: 466-475. PMID: 11351200
  13. Cohen JA, Barkhof F, Comi G, Hartung H-P, Khatri BO, Montalban X, et al. Oral fingolimod or intramus- cular interferon for relapsing multiple sclerosis. N Engl J Med. 2010; 362: 402-415. doi: 10.1056/ NEJMoa0907839 PMID: 20089954
  14. Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet. 2012; 380: 1829-1839. doi: 10.1016/S0140-6736(12)61768-1 PMID: 23122650
  15. Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL, Radue E-W, et al. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N Engl J Med. 2006; 354: 911-923. doi: 10.1056/ NEJMoa044396 PMID: 16510745
  16. Aktas O, Küry P, Kieseier B, Hartung H-P. Fingolimod is a potential novel therapy for multiple sclerosis. Nat Rev Neurol. 2010; 6: 373-382. doi: 10.1038/nrneurol.2010.76 PMID: 20551946
  17. Jones JL, Anderson JM, Phuah C-L, Fox EJ, Selmaj K, Margolin D, et al. Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity. Brain. 2010; 133: 2232-2247. doi: 10.1093/brain/awq176 PMID: 20659956
  18. Milo R. The efficacy and safety of daclizumab and its potential role in the treatment of multiple sclerosis. Ther Adv Neurol Disord. 2014; 7: 7-21. doi: 10.1177/1756285613504021 PMID: 24409199
  19. Arnold DL, Narayanan S, Antel S. Neuroprotection with glatiramer acetate: evidence from the PreCISe trial. J Neurol. 2013; 260: 1901-1906. doi: 10.1007/s00415-013-6903-5 PMID: 23589190
  20. Fox RJ, Kita M, Cohan SL, Henson LJ, Zambrano J, Scannevin RH, et al. BG-12 (dimethyl fumarate): a review of mechanism of action, efficacy, and safety. Curr Med Res Opin. 2014; 30: 251-262. doi: 10. 1185/03007995.2013.849236 PMID: 24131282
  21. Dutta R, Trapp BD. Mechanisms of neuronal dysfunction and degeneration in multiple sclerosis. Prog Neurobiol. 2011; 93: 1-12. doi: 10.1016/j.pneurobio.2010.09.005 PMID: 20946934
  22. Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009; 132: 1175- 1189. doi: 10.1093/brain/awp070 PMID: 19339255
  23. Filippi M, Rocca MA. Preventing brain atrophy should be the gold standard of effective theraphy in MS (after the first year of treatment): No. Mult Scler. 2013; 19: 1005-1006. doi: 10.1177/ 1352458513482387 PMID: 23818019
  24. Rudick RA, Lee J-C, Simon J, Fisher E. Significance of T2 lesions in multiple sclerosis: A 13-year longi- tudinal study. Ann Neurol. 2006; 60: 236-242. doi: 10.1002/ana.20883 PMID: 16786526
  25. Brex PA, Ciccarelli O, O'Riordan JI, Sailer M, Thompson AJ, Miller DH. A longitudinal study of abnor- malities on MRI and disability from multiple sclerosis. N Engl J Med. 2002; 346: 158-164. doi: 10.1056/ NEJMoa011341 PMID: 11796849
  26. Kappos L, Moeri D, Radue EW, Schoetzau A, Schweikert K, Barkhof F, et al. Predictive value of gado- linium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Gadolinium MRI Meta-analysis Group. Lancet. 1999; 353: 964- 969. PMID: 10459905
  27. Zivadinov R, Leist TP. Clinical-magnetic resonance imaging correlations in multiple sclerosis. J Neuro- imaging. 2005; 15: 10S-21S. doi: 10.1177/1051228405283291 PMID: 16385015
  28. Sormani MP, Arnold DL, De Stefano N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann Neurol. 2014; 75: 43-49. doi: 10.1002/ana.24018 PMID: 24006277
  29. Sorensen PS. New management algorithms in multiple sclerosis. Curr Opin Neurol. 2014; 27: 246- 259. doi: 10.1097/WCO.0000000000000096 PMID: 24759080
  30. Vosoughi R, Freedman MS. Therapy of MS. Clin Neurol Neurosurg. 2010; 112: 365-385. doi: 10.1016/ j.clineuro.2010.03.010 PMID: 20362388
  31. De Stefano N, Airas L, Grigoriadis N, Mattle HP, O'Riordan J, Oreja-Guevara C, et al. Clinical relevance of brain volume measures in multiple sclerosis. CNS Drugs. 2014; 28: 147-156. doi: 10.1007/s40263- 014-0140-z PMID: 24446248
  32. Fisher E, Barkhof F, van den Elskamp IJ, Miller M, Jasperse B, Allen R, et al. Comparison of brain atro- phy measurement methods in the context of a clinical trial. In: 25th Congress of the European Comittee for the Treatment and Research in Multiple Sclerosis (ECTRIMS), Dusserldorf, Germany, 2009.
  33. Rinaldi F, Calabrese M, Seppi D, Puthenparampil M, Perini P, Gallo P. Natalizumab strongly sup- presses cortical pathology in relapsing-remitting multiple sclerosis. Mult Scler. 2012; 18: 1760-1767. doi: 10.1177/1352458512447704 PMID: 22570359
  34. Sormani MP, Rovaris M, Valsasina P, Wolinsky JS, Comi G, Filippi M. Measurement error of two differ- ent techniques for brain atrophy assessment in multiple sclerosis. Neurology. 2004; 62: 1432-1434. PMID: 15111692
  35. Bermel RA, Bakshi R. The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol. 2006; 5: 158-170. doi: 10.1016/S1474-4422(06)70349-0 PMID: 16426992
  36. Deloire MSA, Ruet A, Hamel D, Bonnet M, Dousset V, Brochet B. MRI predictors of cognitive outcome in early multiple sclerosis. Neurology. 2011; 76: 1161-1167. doi: 10.1212/WNL.0b013e318212a8be PMID: 21444901
  37. Grassiot B, Desgranges B, Eustache F, Defer G. Quantification and clinical relevance of brain atrophy in multiple sclerosis: a review. J Neurol. 2009; 256: 1397-1412. doi: 10.1007/s00415-009-5108-4 PMID: 19353226
  38. Morgen K, Sammer G, Courtney SM, Wolters T, Melchior H, Blecker CR, et al. Evidence for a direct association between cortical atrophy and cognitive impairment in relapsing-remitting MS. Neuroimage. 2006; 30: 891-898. doi: 10.1016/j.neuroimage.2005.10.032 PMID: 16360321
  39. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multi- ple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011; 69: 292-302. doi: 10.1002/ ana.22366 PMID: 21387374
  40. Figueira F, Figueira G, Soares P, Freitas A. Challenging the "Disease Free Status" Concept in MS. Are We Dealing with the Appropriate Parameters? (P01.189). Neurology. 2013; 80: P01.189.
  41. Kappos L, Radue E-W, Freedman MS, Cree B, Sormani MP, Sfikas N, et al. Inclusion of brain volume loss in a revised measure of multiple sclerosis disease-activity freedom: the effect of fingolimod. In: 2014 Joint ACTRIMS-ECTRIMS Meeting, Boston, Massachusetts, 2014.