Investigation of nonlinear optical parameters of zinc based amorphous chalcogenide films (original) (raw)

Abstract

Third order nonlinear optical properties of amorphous Zn x-S y-Se 100−x−y chalcogenide films have been investigated using single beam transmission z-scan technique at 1064 nm of Nd:YAG laser. Measurement of optical properties of amorphous Zn x-S y-Se 100−x−y chalcogenide films prepared by thermal evaporation technique has been made. X-ray diffraction patterns of chalcogenide films confirm the amorphous nature. Optical band gap (E g) has been estimated using Tauc's plot method from transmission spectra that is found to decrease with increase in content due to valence band broadening and band tailing the system. Nonlinear refractive index (n 2), nonlinear absorption coefficient (ˇ) and third order nonlinear susceptibility (3) of chalcogenide films have been estimated. Self-focusing effect has been observed in closed aperture and reverse saturable absorption in open aperture scheme. Limiting threshold and dynamic range have been calculated from optical limiting studies. The increase in nonlinearity with increase in Zn content has been observed that is understood to be due to decrease in band gap on Zn doping. High nonlinearity makes these films a potential candidate for waveguides, fibers and two photon absorption in optical limiters.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (21)

  1. C. Marchand, Characterization of chalcogenide glasses, http://www. horiba.com/fileadmin/uploads/scientific/documents/tfilm/se-04.pdf
  2. S. Kumar, M.A.M. Khan, Optical properties of amorphous Se94Te6 and Se91Te9 thin films deposited by thermal evaporation, Chalcogenide Lett. 9 (2012) 145-149.
  3. M. Popescu, Disordered chalcogenide optoelectronic materials: phenomena and applications, J. Optoelectron. Adv. Mater. 7 (2005) 2189-2210.
  4. D. Aggarwal, J.S. Sanghera, Development and applications of chalcogenide glass optical fibers at NRL, J. Optoelectron. Adv. Mater. 4 (2002) 665-678.
  5. B. Luther-Davies, S. Madden, D.-Y. Choi1, R. Wang, D. Bulla, X. Gai, T. Han, T. White, T. Vo, F. Luan, M. Pelusi, J. Schroeder, R. Pant, J. Van Erps, B. Eggleton, Highly nonlinear chalcogenide glass waveguides for all optical signal processing, 2011 http://www.opticsinfobase.org/abstract.cfm? uri=nlo-2011-ntue1
  6. A. Zakery, S.R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications, Springer, Heidelberg, 2007.
  7. D. Shen, S.Y. Au, G. Han, D. Que, N. Wang, I.K. Sou, MBE growth and structural characterization of ZnS1-xSex thin films on ITO/glass substrates, J. Mater. Sci. Lett. 22 (2003) 483-487.
  8. V. Vassilev, Multicomponent Cd (Zn)-containing Ge(As)-chalcogenide glasses, J. Univ. Chem. Technol. Metallurgy 41 (2006) 257-276 (review).
  9. S.I. Boldish, W.B. White, Optical band gaps of selected ternary sulfide minerals, Am. Miner. 83 (1998) 865-871.
  10. R. Tintu, V.P.N. Nampoori, P. Radhakrishnan, S. Thomas, Preparation and optical characterization of novel Ge-Se-Sb/PVA composite films for optical limiting application, J. Phys. D: Appl. Phys. 44 (2011) 010251.
  11. P. Sharma, S.C. Katyal, Effect of Ge addition on the optical band gap and refrac- tive index of thermally evaporated As2Se3 thin films, Res. Lett. Mater. Sci. (2008), http://dx.doi.org/10.1155/2008/826402.
  12. P. Petkova, V. Vassilevb, T. Petkovac, B. Moncheva, L. Aljihmanib, Optical prop- erties of ternary chalcogenide thin films with SnTe, J. Optoelectron. Adv. Mater. 7 (2005) 1965-1969.
  13. S. Rani, D. Mohan, N. Kishore, Purnima, Sensitive measurement of optical nonlinearity in amorphous chalcogenide materials in nanosecond regime, Spectrochim. Acta A 93 (2012) 135.
  14. L.A. Gómez, C.B. de Araújo, D.N. Messias, L. Misoguti, S.C. Zilio, M. Nalin, Y. Mes- saddeq, Nonresonant third-order nonlinearity of antimony glasses at telecom wavelengths, J. Appl. Phys. 100 (2006) 116105.
  15. M. Kastner, D. Adler, Valence-alternation model for localized gap states in lone- pair semiconductors, Phys. Rev. Lett. 37 (1976) 1504-1507.
  16. K. Tanaka, Optical nonlinearity in photonic glasses, J. Mater. Sci. Mater. Electron. 16 (2005) 633.
  17. P. Sharma, V. Sharma, S.C. Katyal, Variation of optical constants in Ge10Se60Te30 thin film, Chalcogenide Lett. 3 (2006) 73-79.
  18. K.S. Bindra, R. Chari, V. Shukla, Two-photon absorption and nonlinear refraction in commercial colour glass filters, Pure Appl. Opt. 1 (1999) 73.
  19. R.K. Rekha, A. Ramalingam, Optical nonlinear properties and optical limiting effect of metanil yellow, Am. J. Eng. Appl. Sci. 2 (2009) 285.
  20. H. Ticha, L. Tichya, Semiempirical relation between non-linear susceptibility (refractive index), linear refractive index and optical gap and its application to amorphous chalcogenides, J. Optoelectron. Adv. Mater. 42 (2002) 381-386.
  21. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quantum Electron. 26 (1990) 760.