Amorphous silicon photosensors integrated in microfluidic structures as a technological demonstrator of a “true” Lab-on-Chip system (original) (raw)

On-chip detection performed by amorphous silicon balanced photosensor for lab-on chip application

Sensing and Bio-Sensing Research, 2015

In this paper we have integrated a two-channel microfluidic network, fabricated by molding two polydimethilsiloxane channels, with a balanced photodiode constituted by two series-connected amorphous silicon/silicon carbide n-i-p stacked junctions, deposited by Plasma Enhanced Chemical Vapor Deposition on a glass substrate. The structure takes advantage of the differential current measurement to reveal very small variations of photocurrent in a large background current signal suitable for biomedical application. The microfluidic network has been fabricated with dimensions of 3 cm  2 mm  150 lm (L  W  H) for each channel. The experiments have been carried out measuring the differential current in several conditions. All the experiments have been executed under a large background light intensity to reproduce realistic operating conditions in biomedical applications. We have found that the proposed device is able to detect the presence or absence of water flow in the channel and the presence of fluorescent marker. In particular, under identical channel conditions the differential current is at least a factor 60 lower that the current flowing in each diode.

Microfluidics meets thin-film electronics: a new approach towards an integrated intelligent lab-on-a-chip

Smart Sensors, Actuators, and MEMS, 2003

A novel architecture for a lab-on-a-chip is presented. The architecture consists of a microfluidic system including integrated optical sensors and thin film transistors. The concept is based on the TFA (Thin Film on ASIC) technology that was developed at University of Siegen. The device consists of two substrate plates that are sandwiched together using oxygen plasma bonding. The thicker bottom plate contains the contacts to the microfluidic channels, while the thinner top plate contains the microfluidic system. The top plate is bonded face down onto the bottom substrate, and, on its reverse side, hydrogenated amorphous silicon (a-Si:H) based pindiodes and thin film transistors (TFTs) are deposited for optical detection and data transfer. The pin-diodes and the TFTs are manufactured by PECVD (Plasma Enhanced Chemical Vapor Deposition) from silane, ammonia and dopant gases at temperatures around 200 • C. Sputtered ZnO:Al is used as semitransparent front contact for the diodes, while Al and Cr are used as contacts to the transistors. The TFTs are used as switches to read out an array of pin-diodes. Experimental results for an electrokinetic microfluidic pump and the a-Si:H devices are reported. Further developments and potential applications for microanalysis are outlined.

Microfluidic chips with integrated amorphous silicon sensors for point-of-care testing

2014

Herein we present a point-of-care device for immunodiagnostic tests. This device integrates, on the same glass substrate, a PDMS microfluidic network, an array of amorphous silicon photosensors for onchip optical detection and a dedicated surface chemistry based on polymer brushes. As proof of principle, a peptide named VEA was immobilized on PHEMA polymer brushes. The survey relies on the formation, inside the microchannels, of a sandwich between primary antibody against VEA and a secondary antibody labeled with HRP, which catalyzes the reaction between luminol and hydrogen peroxide, yielding a chemiluminescent signal detected by the array of photosensors deposited underneath.

An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay

Biosensors, 2017

A lab-on-chip system, integrating an all-glass microfluidics and on-chip optical detection, was developed and tested. The microfluidic network is etched in a glass substrate, which is then sealed with a glass cover by direct bonding. Thin film amorphous silicon photosensors have been fabricated on the sealed microfluidic substrate preventing the contamination of the micro-channels. The microfluidic network is then made accessible by opening inlets and outlets just prior to the use, ensuring the sterility of the device. The entire fabrication process relies on conventional photolithographic microfabrication techniques and is suitable for low-cost mass production of the device. The lab-on-chip system has been tested by implementing a chemiluminescent biochemical reaction. The inner channel walls of the microfluidic network are chemically functionalized with a layer of polymer brushes and horseradish peroxidase is immobilized into the coated channel. The results demonstrate the success...

Integrated Hydrogenated Amorphous Si Photodiode Detector for Microfluidic Bioanalytical Devices

Analytical Chemistry, 2003

A discrete a-Si:H photodiode is first fabricated on a glass substrate and used to detect fluorescent dye standards using conventional confocal microscopy. In this format, the limit of detection for fluorescein flowing in a 50-µm deep channel is 680 pM (S/N ) 3). A hybrid integrated detection system consisting of a half-ball lens, a ZnS/YF 3 multilayer optical interference filter with a pinhole, and an annular a-Si:H photodiode is also developed that allows the laser excitation to pass up through the central aperture in the detector. Using this integrated detection device, the limit of detection for fluorescein is 17 nM, and DNA fragment sizing and chiral analysis of glutamic acid are successfully performed. The a-Si:H detector exhibits high sensitivity at the emission wavelengths of commonly used fluorescent dyes and is readily microfabricated and integrated at low cost making it ideal for portable microfluidic bioanalyzers and emerging large scale integrated microfluidic technologies.

Development of low-cost microfluidic systems for lab-on-a-chip biosensor applications

NanoBiotechnology, 2006

In this work, we develop low-cost microfluidic systems based on polydimethylsiloxane (PDMS) for lab-on-a-chip applications. PDMS microfluidic structures have been fabricated by micromolding, PDMS casting, and plasma bonding processes. The micromolding technique is used to fabricate PDMS slabs with micro-sized grooves, and the complete microchannel is formed by bonding PDMS slab with glass or PDMS substrate. The molding procedure using SU-8 photoresist patterning on silicon wafer, PDMS microchannel fabrication, and PDMS surface treatment using oxygen plasma and TiO 2 coating, are discussed. The various parameters for oxygen plasma treatment including RF power and treatment time are studied in order to obtain conditions for good bonding with the glass substrate. The best condition for plasma treatment is found to be the low RF power (8 W) with 5 min treatment time. In addition, TiO 2 coating with oxygen plasma treatment has been applied to make PDMS surface more hydrophilic to improve aqueous solution compatilbility. The microfluidic channels for various applications, including sample injection cross channel, micropump channel, T and Y sample mixers, PCR thermocycling chamber and channel, capillary electrophoresis flow channel, and conductimetric systems have been fabricated. Finally, a typical application of the PDMS chip in a flow injection conductimetric system for sodium chloride detection has been demonstrated.

Silicon photonic sensors incorporated in a digital microfluidic system

Analytical and Bioanalytical Chemistry, 2012

Label-free biosensing with silicon nanophotonic microring resonator sensors has proven to be an excellent sensing technique for achieving high-throughput and high sensitivity, comparing favorably with other labeled and label-free sensing techniques. However, as in any biosensing platform, silicon nanophotonic microring resonator sensors require a fluidic component which allows the continuous delivery of the sample to the sensor surface. This component is typically based on microchannels in PDMS or other materials which add cost and complexity to the system. The use of microdroplets in a digital microfluidic system, instead of continuous flows, is one of the recent trends in the field, where micro-to picoliter-sized droplets are generated, transported, mixed and split, thereby creating miniaturized reaction chambers which can be controlled individually in time and space. This avoids cross-talk between samples or reagents and allows fluid plugs to be manipulated on reconfigurable paths, which cannot be achieved using the more established and more complex technology of microfluidic channels where droplets are controlled in series. It has great potential for high-throughput liquid handling, while avoiding on-chip cross contamination. We present the integration of two miniaturized technologies: label-free silicon nanophotonic microring resonator sensors and digital microfluidics, providing an alternative to the typical microfluidic system based on microchannels. The performance of this combined system is demonstrated by performing proof-of-principle measurements of glucose, sodium chloride and ethanol concentrations. These results show that multiplexed real-time detection and analysis, great flexibility, and portability make the combination of these technologies an ideal platform for easy and fast use in any laboratory.

Hybrid Integrated Silicon Microfluidic Platform for Fluorescence Based Biodetection

Sensors, 2007

The desideratum to develop a fully integrated Lab-on-a-chip device capable of rapid specimen detection for high throughput in-situ biomedical diagnoses and Point-of-Care testing applications has called for the integration of some of the novel technologies such as the microfluidics, microphotonics, immunoproteomics and Micro Electro Mechanical Systems (MEMS). In the present work, a silicon based microfluidic device has been developed for carrying out fluorescence based immunoassay. By hybrid attachment of the microfluidic device with a Spectrometer-on-chip, the feasibility of synthesizing an integrated Lab-on-a-chip type device for fluorescence based biosensing has been demonstrated. Biodetection using the microfluidic device has been carried out using antigen sheep IgG and Alexafluor-647 tagged antibody particles and the experimental results prove that silicon is a compatible material for the present application given the various advantages it offers such as cost-effectiveness, ease of bulk microfabrication, superior surface affinity to biomolecules, ease of disposability of the device etc., and is thus suitable for fabricating Lab-on-a-chip type devices.

Integrated optical microfluidic lab-on-a-chip

Photonics North 2008, 2008

Bio-security for health monitoring and diagnosis are the needs of the hour, for rapid detection of biological and chemical species. This calls for a necessity to develop a cost effective miniaturized and portable biosensor device for in-situ biomedical applications and Point-of-Care Testing (POCT). While portability of the biosensor is required for in-situ medical detections, miniaturization is essential for handling smaller sample volumes and high throughput. Thus, the above mentioned concerns cannot be addressed unless a fully integrated biosensor system is developed. In this work, an integrated opto microfluidic based Lab-on-a-chip device is proposed for carrying out fluorescence based biodetection. The input and output fibers were integrated with the microfluidic channel so as to make a robust setup. Fluorescence detection was carried out using Alexafluor 647 tagged antibody particles and the output was measured with a Spectrometer-on-Chip, integrated with the device. The experimental results prove that the proposed device is highly suitable for Lab-on-a-Chip applications.

Monolithic Integration of a Novel Microfluidic Device with Silicon Light Emitting Diode-Antifuse and Photodetector

32nd European Solid-State Device Research Conference, 2002

Light emitting diode antifuse has been integrated into a microfluidic device that is realized with extended standard CMOS technological steps. The device comprises of a microchannel sandwiched between a photodiode detector and a nanometer-scale diode antifuse light emitter. Within this contribution, the device fabrication process, working principle and properties will be discussed. Change in the interference fringe of the antifuse spectra has been measured due to the filling of the channel. Preliminary applications are electroosmotic flow speed measurement, detection of absorptivity of liquids in the channel…