Correlation of magnetic moments and local structure of FePt nanoparticles (original) (raw)

Abstract

The influence of structural and compositional changes within FePt nanoparticles on their magnetic properties was studied by means of x-ray absorption spectroscopy in the near-edge regime and its associated magnetic circular dichroism as well as by analysis of the extended x-ray absorption fine structure. The magnetic moments at the Fe sites were found to be a sensitive monitor to changes of the local surrounding: While compositional inhomogeneities in the nanoparticles yield significantly reduced magnetic moments (by 20-30%) with respect to the corresponding bulk material, thermally induced changes in the crystal structure yields strongly enhanced orbital contributions (up to 9% of the spin magnetic moment). Also the break of crystal symmetry at the surface leads to an enhanced orbital magnetism which was confirmed by determination of the ratio of orbital-to-spin magnetic moment for FePt particles with different sizes between 3 and 6 nm in diameter.

Loading...

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

References (47)

  1. Chantrell R W, Weller D, Klemmer T J, Sun S, and Fullerton E E 2002, J. Appl. Phys. 91, 6866
  2. Antoniak C, Lindner J, and Farle M 2005, Europhys. Lett. 70, 250
  3. Bian B, Laughlin D E, Sato K, Hirotsu Y 2000, J. Appl. Phys. 87, 6962
  4. Kim C K, Kan D, Veres T, Normadin F, Liao J K, Kim H H, Lee S-H, Zahn M, and Muhammed M 2005, J. Appl. Phys. 97, 10Q918
  5. Ulmeanu M, Antoniak C, Wiedwald U, Farle M, Frait Z, and Sun S 2004, Phys. Rev. B 69, 054417
  6. Dorman J L, Fiorani D, and Tronc E 1997, Adv. Chem. Phys. 98, 283
  7. Ivanov O A, Solina L V, Demshina V A, and Magat L M 1973, Phys. Met. Metall. 35, 81
  8. Visokay M R and Sinclair R 1995, Appl. Phys. Lett. 66, 1692
  9. Thiele J-U, Folks L, Toney M F, and Weller D 1998, J. Appl. Phys. 84, 5686
  10. Shima T, Takanashi K, Takahashi Y K, and Hono K 2004, Appl. Phys. Lett. 85, 2571
  11. Rellinghaus B, Kästner J, Schneider T, Wassermann E F, and Mohn P 1995, Phys. Rev. B 51, 2983
  12. Whang S H, Feng Q, and Gao Y-Q 1998, Acta mater. 46, 6485
  13. Sun S, Murray C B, Weller D, Folks L, Moser A 2000, Science 287, 1989
  14. Boyen H-G, Fauth K, Stahl B, Ziemann P, Kästle G, Weigl F, Banhart F, Heßler M, Schütz G, Gajbhije N S, Ellrich J, Hahn H, Büttner M, Garnier M G, and Oelhafen P 2005, Adv. Mat. 17, 574
  15. Antoniak C and Farle M 2007, Mod. Phys. Lett. B 21, 1111
  16. Mizuno M, Sasaki Y, Yu A C C, and Inoue M 2004, Langmuir 20, 11305
  17. Yu A C C, Mizuno M, Sasaki Y, Inoue M, Kondo H, Ohta I, Djayaprawira D, and Takahashi M 2003, Appl. Phys. Lett. 82, 4352
  18. Sun S, Anders S, Hamann H F, Thiele J-U, Baglin J E E, Thomson T, Fullerton E E, Murray C B, and Terris B D 2002, J. Am. Chem. Soc. 124 2884
  19. Li D, Poudyal N, Nandwana V, Jin Z, and Elkins K (2006), J. Appl. Phys. 99, 08E911
  20. Chen M-P, Nishio H, Kitamoto Y, Yamamoto H, J. Appl. Phys. 97, 10J321
  21. Antoniak C, Trunova A, Spasova M, Farle M, Wende H, Wilhelm F, and Rogalev A 2008, Phys. Rev. B 78,0401406(R)
  22. McKale A G, Veal B W, Paulikas A P, Chan S-K, and Knapp G S 1998, Phys. Rev. B 38, 10919
  23. Faxén H and Holtsmark J 1927, Z. Phys. 45, 307
  24. Antoniak C, Spasova M, Trunova A, Fauth K, Wilhelm F, Rogalev A, Minár J, Ebert H, Farle M, Wende H 2009 J. Phys.: Cond. Mat. 21, 336002
  25. Ankudinov A L, Ravel B, Rehr J J, and Conradson S D 1998, Phys. Rev. B 58, 7565
  26. Zabinsky S I, Rehr J J, Ankudinov A, Albers R C, and Eller M J 1995, Phys. Rev. B 52, 2995
  27. Newville M, Liviņš P, Yacoby Y, Rehr J J, and Stern E A 1993, Phys. Rev. B 47, 14126
  28. Ravel B and Newville M 2005, J. Synchr. Rad. 12, 537 (2005)
  29. Newville M 2001, J. Synchr. Rad. 8, 96
  30. The FEFF project homepage, http://leonardo.phys.washington.edu/feff/
  31. Grange W, Maret M, Kappler J-P, Vogel J, Fontaine A, Petroff F, Krill G, Rogalev A, Goulon J, Finazzi M, and Brookes N B 1998, Phys. Rev. B 58, 6298
  32. 14th International Conference on X-Ray Absorption Fine Structure (XAFS14) IOP Publishing Journal of Physics: Conference Series 190 (2009) 012118 doi:10.1088/1742-6596/190/1/012118
  33. Thole B T, Carra P, Sette F, and van der Laan G 1992, Phys. Rev. Lett. 68, 1943
  34. Carra P, Thole B T, Altarelli M, and Wang X 1993, Phys. Rev. Lett. 70, 694
  35. Chen C T, Idzerda Y U, Lin H-J, Smith N V, Meigs G, Chaban E, Ho G H, Pellegrin E, and Sette F 1995, Phys. Rev. Lett. 75, 152
  36. Ebert H et al., The Munich SPR-KKR package, version 3.6,http://olymp.cup.uni- muenchen.de/ak/ebert/SPRKKR;
  37. Ebert H 2000, Fully relativistic band structure calculations for magnetic solids -Formalism and Application in Electronic Structure and Physical Properties of Solids, editor: H. Dreyssé, Lecture Notes in Physics 535 (Springer Berlin) p 191
  38. Nakajima R, Stöhr J, and Idzerda Y U 1999, Phys. Rev. B 59, 6421
  39. Fauth K 2004, Appl. Phys. Lett. 85, 3271
  40. Antoniak C, Lindner J, Spasova M, Sudfeld D, Acet M, Farle M, Fauth K, Wiedwald U, Boyen H-G, Ziemann P, Wilhelm F, Rogalev A, and Sun S 2006, Phys. Rev. Lett. 97, 117201 (2006)
  41. Sharrock M P 1994, J. Appl. Phys. 76, 6413
  42. Dmitrieva O, Spasova M, Antoniak C, Acet M, Dumpich G, Kästner J, Farle M, Fauth K, Wiedwald U, Boyen H-G, and Ziemann P 2007, Phys. Rev. B 76, 064414
  43. Fauth K et al., to be published
  44. Labaye Y, Crisan O, Berger L, Greneche J M, and Coey J M D 2002, J. Appl. Phys. 91, 8715
  45. Garanin D. A. and Kachkachi H 2003, Phys. Rev. Lett. 90, 065504
  46. Edmonds K W, Binns C, Baker S H, Thornton S C, Norris C, Goedkoop J B, Finazzi M, and Brookes N B 1999, Phys. Rev. B 60, 472
  47. 14th International Conference on X-Ray Absorption Fine Structure (XAFS14) IOP Publishing Journal of Physics: Conference Series 190 (2009) 012118 doi:10.1088/1742-6596/190/1/012118