Electron beam nanofabrication of ferromagnetic nanostructures in TEM (original) (raw)
2011, Applied Physics A-materials Science & Processing
Electron beam (e-beam) fabrication of nanostructures by transmission electron microscopy (TEM) is rapidly developing into a top-down nanofabrication method for the sub-5 nm fabrication of structures that cannot usually be realised using resist based lithographic techniques or by the focused ion beam patterning methods. We describe the usage of a variety of e-beam shapes, including point and elliptical line focus, as well as a comparison of LaB6 and field-emission guns (FEGs), to achieve versatile sculpting of nanodot arrays, nanobridges and nanotips. We operate our patterning on free-standing nickel (Ni) thin film laterally connected to a silicon (Si) substrate as well as to free-standing Ni nanotips, where we achieve a novel three-dimensional (3D) nano-sculpting methodology.
Related papers
A TEM investigation of patterned ferromagnetic nanostructures by lithographic techniques
2011
This PhD research project encompasses an investigation into the controlled behaviour of magnetic domain walls in patterned ferromagnetic nanostructures using advanced nanofabrication techniques and characterised by the techniques of transmission electron microscopy. By fabricating Permalloy (Py) nanowires using electron beam lithography (EBL) and focused ion beam (FIB) milling a comparative study has been made in which key differences in the magnetic behaviour have been identified. Nominally identical Py nanowires, with widths down to 150 nm, were fabricated onto a single electron transparent Si3N4 membrane. Transmission electron microscopy (TEM) experiments were performed to compare the nanostructures produced by these two techniques in what we believe is the first direct comparison of fabrication techniques for nominally identical nanowires. Both EBL and FIB methods produced high quality structures with edge roughness being of the order of the mean grain size 5 -10 nm observed in ...
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.