Fibre Reinforced Building Envelopes Inspired by Nature: Pavilion COCOON_FS (original) (raw)
Biologically-Inspired Systems
Abstract
Considering contemporary architecture, facades often envelope bio-morphically shaped buildings or show at least three-dimensional tectonics as well as in the near future, they tend to need additional functions embedded. As prominent solitaires show, these building envelopes use new hull materials that stand outside of what we have learned, materials can perform to building-concepts. The possibilities of modern computer technology promise an easy feasibility of these approaches, but cannot always be fulfilled by real-world building experiences. Through fundamental research of biological structures of maritime plankton, morphological characteristics of diatoms have been discovered that promise to be translated and transferred in architectural structures for buildings, especially for building envelopes. Nature produces light weight shell constructions made from biogenetic silica. In some species, morphological specialities of diatom’s frustule are hierarchically organized. The potential of structural organisation as well as the material complexity in nature leads researchers towards new developments in architecture. In the here discussed technical transformation processes, the morphological structures, as well as the principle of material compounds of diatom structures are translated into building elements that use silica in a manner comparable to nature. This new architecture also uses principles of hierarchical organisation. The abstraction of biological examples and technological implementation are realised using genetic computer algorithm and morphogenetic constructions which are transformed on technical fibre composites with silicate or carbon products. The use of highly resilient fibre composites has proven itself in the aviation industry, and stands out for its suitability for 3D shaping, which is becoming increasingly interesting for architecture. This technology promises free-form and load-capable design—two attributes which, at first glance, seem ideal for fulfilling the promises of computer-generated modelling. The portable pavilion COCOON_FS is a result of this research and development. Special glass fibres are added as composites in 3D-modelled shapes, so-called cells. The technology of fibre composite construction combines complex shapes with production-oriented advancement and highly material-efficient support and hull structures.
Göran Pohl hasn't uploaded this paper.
Let Göran know you want this paper to be uploaded.
Ask for this paper to be uploaded.