Exact Rényi entropies of D-dimensional harmonic systems (original) (raw)
The European Physical Journal Special Topics
The determination of the uncertainty measures of multidimensional quantum systems is a relevant issue per se and because these measures, which are functionals of the single-particle probability density of the systems, describe numerous fundamental and experimentally accessible physical quantities. However, it is a formidable task (not yet solved, except possibly for the ground and a few lowest-lying energetic states) even for the small bunch of elementary quantum potentials which are used to approximate the mean-field potential of the physical systems. Recently, the dominant term of the Heisenberg and Rényi measures of the multidimensional harmonic system (i.e., a particle moving under the action of a D-dimensional quadratic potential, D > 1) has been analytically calculated in the high-energy (i.e., Rydberg) and the high-dimensional (i.e., pseudoclassical) limits. In this work we determine the exact values of the Rényi uncertainty measures of the D-dimensional harmonic system for all ground and excited quantum states directly in terms of D, the potential strength and the hyperquantum numbers.
Sign up for access to the world's latest research.
checkGet notified about relevant papers
checkSave papers to use in your research
checkJoin the discussion with peers
checkTrack your impact