Well-Posedness for Multicomponent Schrödinger–gKdV Systems and Stability of Solitary Waves with Prescribed Mass (original) (raw)
Abstract
In this paper we prove the well-posedness issues of the associated initial value problem, the existence of nontrivial solutions with prescribed L 2-norm, and the stability of associated solitary waves for two classes of coupled nonlinear dispersive equations. The first problem here describes the nonlinear interaction between two Schrödinger type short waves and a generalized Korteweg-de Vries type long wave and the second problem describes the nonlinear interaction of two generalized Korteweg-de Vries type long waves with a common Schrödinger type short wave. The results here extend many of the previously obtained results for two-component coupled Schrödinger-Korteweg-de Vries systems.
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (35)
- Albert, J., Angulo, J.: Existence and stability of ground-state solutions of a Schrödinger-KdV system. Proc. R. Soc. Edinburgh 133A, 987-1029 (2003)
- Albert, J., Bhattarai, S.: Existence and stability of a two-parameter family of solitary waves for an NLS- KdV system. Adv. Differ. Equ. 18, 1129-1164 (2013)
- Angulo, J.: Stability of solitary wave solutions for equations of short and long dispersive waves. Electron. J. Differ. Equ. 72, 1-18 (2006)
- Bartsch, T., Jeanjean, L.: Normalized solutions for nonlinear Schrödinger systems. arXiv:1507.04649
- Bekiranov, D., Ogawa, T., Ponce, G.: Interaction equations for short and long dispersive waves. J. Funct. Anal. 158, 357-388 (1998)
- Benjamin, T.B.: The stability of solitary waves. Proc. R. Soc. Lond. Ser. A 328, 153-183 (1972)
- Bhattarai, S.: Stability of solitary-wave solutions of coupled NLS equations with power-type nonlineari- ties. Adv. Nonlinear Anal. 4, 73-90 (2015)
- Bhattarai, S.: Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. 36(4), 1789-1811 (2016)
- Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. Amer- ican Mathematical Society, Providence (2003)
- Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549-561 (1982)
- Chen, L.: Orbital stability of solitary waves of the nonlinear Schrödinger-KDV equation. J. Partial Differ. Equ. 12, 11-25 (1999)
- Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness for the KdV in Sobolev spaces of negative indices. Electron. J. Differ. Equ. 26, 1-7 (2001)
- Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Sharp global wellposedness for KdV and modified Kdv on R and T. J. Am. Math. Soc. 16, 705-749 (2003)
- Colorado, E.: On the existence of bound and ground states for some coupled nonlinear Schrödinger- Korteweg-de Vries equations. Adv. Nonlinear Anal. 6, 407-426 (2017)
- Corcho, A.J., Linares, F.: Well-posedness for the Schrödinger-Korteweg-de Vries system. Trans. AMS 359, 4089-4106 (2007)
- Deconinck, B., Nguyen, N.V., Segal, B.L.: The interaction of long and short waves in dispersive media. J. Phys. A Math. Gen. 49, 415501 (2016)
- Esteves, T.: O problema de Cauchy para a equação KdV super-simétrica com dado inicial pequeno. Master dissertation. Federal University of Piaui, Brazil (2014)
- Funakoshi, M., Oikawa, M.: The resonant interaction between a long internal gravity wave and a surface gravity wave packet. J. Phys. Soc. Jpn. 52, 1982-1995 (1983)
- Garrisi, D.: On the orbital stability of standing-waves pair solutions of a coupled non-linear Klein-Gordon equation. Adv. Nonlinear Stud. 12, 639-658 (2012)
- Ginibre, J., Tsutsumi, Y., Velo, G.: On the Cauchy problem for the Zakharov system. J. Funct. Anal. 151, 384-436 (1997)
- Guo, B., Miao, C.: Well-posedness of the Cauchy problem for the coupled system of the Schrödinger-KdV equations. Acta Math. Sin. Engl. Ser. 15, 215-224 (1999)
- Hojo, H., Ikezi, H., Mima, K., Nishikawa, K.: Coupled nonlinear electron-plasma and ionacoustic waves. Phys. Rev. Lett. 33, 148-151 (1974)
- Ikoma, N.: Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions. Adv. Nonlinear Stud. 14, 115-136 (2014)
- Kakutani, T., Kawahara, T., Sugimoto, N.: Nonlinear interaction between short and long capillary-gravity waves. J. Phys. Soc. Jpn. 39, 1379-1386 (1975)
- Kenig, C.E., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-de Vries quation. J. Am. Math. Soc. 4, 323-347 (1991)
- Kenig, C.E., Ponce, G., Vega, L.: A bilinear estimate with applications to the KdV equation. J. Am. Math. Soc. 9(2), 573-603 (1996)
- Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations, 2nd edn. Universitext, Springer, New York (2015)
- Lions, P .L.: The concentration-compactness principle in the calculus of variations. The locally compact case, Part 1. Ann. Inst. H. Poincare Anal. Non-linéaire 1, 104-145 (1984)
- Lieb, E.H., Loss, M.: Analysis, 2nd ed., Graduate studies in mathematics, vol. 14. American Mathematical Society, Providence (2001)
- Molinet, L., Ribaud, F.: Well-posedness results for the generalized Benjamin-Ono equation with arbitrary large initial data. IMRN Int. Math. Res. Notices 70, 3757-3795 (2004)
- Muscalu, C., Schlag, W.: Classical and Multilinear Harmonic Analysis, vol. I. Cambridge University Press, Cambridge (2013)
- Pecher, H.: The Cauchy problem for a Schrödinger-Korteweg-de Vries system with rough data. Differ. Int. Equ. 18, 1147-1174 (2005)
- Satsuma, J., Yajima, N.: Soliton solutions in a diatomic lattice system. Progr. Theor. Phys. 62, 370-378 (1979)
- Tsutsumi, M.: Well-posedness of the Cauchy problem for a coupled Schrödinger-KdV equation. Math. Sci. Appl. 2, 513-528 (1993)
- Wu, Y.: The Cauchy problem of the Schrödinger-Korteweg-de Vries system. Differ. Int. Equ. 23, 569-600 (2010)