Plant Cell Wall, a Challenge for Its Characterisation (original) (raw)
Related papers
Microanalysis of Plant Cell Wall Polysaccharides
Molecular Plant, 2009
Oligosaccharide Mass Profiling (OLIMP) allows a fast and sensitive assessment of cell wall polymer structure when coupled with Matrix Assisted Laser Desorption Ionisation Time Of Flight Mass Spectrometry (MALDI-TOF MS). The short time required for sample preparation and analysis makes possible the study of a wide range of plant organs, revealing a high degree of heterogeneity in the substitution pattern of wall polymers such as the cross-linking glycan xyloglucan and the pectic polysaccharide homogalacturonan. The high sensitivity of MALDI-TOF allows the use of small amounts of samples, thus making it possible to investigate the wall structure of single cell types when material is collected by such methods as laser micro-dissection. As an example, the analysis of the xyloglucan structure in the leaf cell types outer epidermis layer, entire epidermis cell layer, palisade mesophyll cells, and vascular bundles were investigated. OLIMP is amenable to in situ wall analysis, where wall polymers are analyzed on unprepared plant tissue itself without first isolating cell walls. In addition, OLIMP enables analysis of wall polymers in Golgi-enriched fractions, the location of nascent matrix polysaccharide biosynthesis, enabling separation of the processes of wall biosynthesis versus post-deposition apoplastic metabolism. These new tools will make possible a semi-quantitative analysis of the cell wall at an unprecedented level.
Heterogeneity in the chemistry, structure and function of plant cell walls
Nature Chemical Biology, 2010
Higher plants resist the forces of gravity and powerful lateral forces through the cumulative strength of the walls that surround individual cells. These walls consist mainly of cellulose, noncellulosic polysaccharides and lignin, in proportions that depend upon the specific functions of the cell and its stage of development. Spatially and temporally controlled heterogeneity in the physicochemical properties of wall polysaccharides is observed at the tissue and individual cell levels, and emerging in situ technologies are providing evidence that this heterogeneity also occurs across a single cell wall. We consider the origins of cell wall heterogeneity and identify contributing factors that are inherent in the molecular mechanisms of polysaccharide biosynthesis and are crucial for the changing biological functions of the wall during growth and development. We propose several key questions to be addressed in cell wall biology, together with an alternative two-phase model for the assembly of noncellulosic polysaccharides in plants.
Nicotiana species are used to study agriculturally and industrially relevant processes, but limited screening methods are available for this species. A tobacco leaf cell wall preparation was fractionated using both chemical and enzymatic methods; the fractions obtained were subsequently analysed using rapid high-throughput wall profiling tools. The results confirmed previous data showing that mature tobacco leaf cell walls are predominantly composed of pectic homogalacturonans with lesser amounts of hemicellulosic arabinoxyloglucan and glucuronoxylan polymers. This confirmation provided proof that the profiling methods could generate good-quality results and paves the way for high-throughput screening of tobacco mutants where a range of biological processes, where the cell wall profile is important, are studied. A novel enzymatic oligosaccharide fingerprinting method was optimized to rapidly analyse the structure of XXGG-rich arabinoxyloglucans characteristic of Solanaceae species such as tobacco. Digestion profiles using two available xyloglucanase-specific endoglucanases: Trichoderma reseei EGII and Paenibacillus sp. xyloglucanase were compared showing that the latter enzyme has a higher specificity toward tobacco arabinoxyloglucans, and is better-suited for screening. This methodology would be suitable for species, such as tomato (Solanum lycopersicum) or potato (Solanum tuberosum), with similar XXGG-type motifs in their xyloglucan structure.
Frontiers in Plant Science
Plant cell walls are highly complex structures composed of diverse classes of polysaccharides, proteoglycans, and polyphenolics, which have numerous roles throughout the life of a plant. Significant research efforts aim to understand the biology of this cellular organelle and to facilitate cell-wall-based industrial applications. To accomplish this, researchers need to be provided with a variety of sensitive and specific detection methods for separate cell wall components, and their various molecular characteristics in vitro as well as in situ. Cell wall component-directed molecular detection probes (in short: cell wall probes, CWPs) are an essential asset to the plant glycobiology toolbox. To date, a relatively large set of CWPs has been produced-mainly consisting of monoclonal antibodies, carbohydrate-binding modules, synthetic antibodies produced by phage display, and small molecular probes. In this review, we summarize the state-of-the-art knowledge about these CWPs; their classification and their advantages and disadvantages in different applications. In particular, we elaborate on the recent advances in non-conventional approaches to the generation of novel CWPs, and identify the remaining gaps in terms of target recognition. This report also highlights the addition of new "compartments" to the probing toolbox, which is filled with novel chemical biology tools, such as metabolic labeling reagents and oligosaccharide conjugates. In the end, we also forecast future developments in this dynamic field.
Isolation of Plant Cell Wall Proteins
Methods in Molecular Biology™, 2008
The quality of a proteomic analysis of a cell compartment strongly depends on the reliability of the isolation procedure for the cell compartment of interest. Plant cell walls possess specific drawbacks: (i) the lack of a surrounding membrane may result in the loss of cell wall proteins (CWP) during the isolation procedure; (ii) polysaccharide networks of cellulose, hemicelluloses and pectins form potential traps for contaminants such as intracellular proteins; (iii) the presence of proteins interacting in many different ways with the polysaccharide matrix require different procedures to elute them from the cell wall. Three categories of CWP are distinguished: labile proteins that have little or no interactions with cell wall components, weakly bound proteins extractable with salts, and strongly bound proteins. Two alternative protocols are decribed for cell wall proteomics: (i) non-destructive techniques allowing the extraction of labile or weakly bound CWP without damaging the plasma membrane; (ii) destructive techniques to isolate cell walls from which weakly or strongly bound CWP can be extracted. These protocols give very low levels of contamination by 2 intracellular proteins. Their application should lead to a realistic view of the cell wall proteome at least for labile and weakly bound CWP extractable by salts.
Lignin is a complex polymer of phenolic compounds (monolignins), which contributes to the rigidity of the plant cell wall. Lignification is essential for plant development, however it is also one of the mechanisms of plant defense. Accumulation of lignin and the polymerization of monolignins at sides of pathogen attack protect the cell wall against cell wall-degrading enzymes and prevent therefore the pathogen's penetration. In addition to cross-linkage of phenolic compounds, this resistance mechanism includes also callose and cellulose appositions on the cell wall. This results in structures called papillae, which provide the necessary resistance to the mechanical pressure exercised by fungal appressorium. Lignin accumulation in cell walls is therefore a part of plant defense responses. Here we describe a quantification method for lignin and cell wall phenolic compounds, which is based on an acid-catalyzed reaction resulting in a colored and soluble lignin-thioglycolate complex suitable for photometric measurements.
The Structure of Plant Cell Walls
Plant Physiology, 1975
The walls of barley (Hordeum vulgare var. Himalaya) aleurone cells are composed of two major polysaccharides, arabinoxylan (85%) and cellulose (8%). The cell wall preparations contain 6% protein, but this protein does not contain detectable amounts of hydroxyproline. The arabinoxylan has a linear 1, 4-xylan backbone; 33 % of the xylosyl residues are substituted at the 2 and/or 3 position with single arabinofuranosyl residues. The results of in vitro cellulose binding experiments support the hypothesis that noncovalent bonds between the arabinoxylan chains and cellulose fibers play a part in maintaining wall structure. It is suggested that bonding between the arabinoxylan chains themselves is also utilized in forming the walls.
Plant cell wall characterization using scanning probe microscopy techniques
Biotechnology for Biofuels, 2009
Lignocellulosic biomass is today considered a promising renewable resource for bioenergy production. A combined chemical and biological process is currently under consideration for the conversion of polysaccharides from plant cell wall materials, mainly cellulose and hemicelluloses, to simple sugars that can be fermented to biofuels. Native plant cellulose forms nanometer-scale microfibrils that are embedded in a polymeric network of hemicelluloses,