Characterizing EMG Data using Machine- Learning Tools (original) (raw)
Related papers
Automatic Classification of Intramuscular EMG to Recognize Pathologies
2019
This paper proposes to assess the relevance of new automated tools for electromyography (EMG) analysis, in order to differentiate neuropathic from myopathic patterns. The challenge is to define the diagnosis with only one iEMG signal per patient. Our proposed method uses the decomposition of the EMG signal to characterize motor unit action potentials (MUAPs). The decomposition of each iEMG signal is carried out with EMGLAB. For each signal, the decomposition provides a code which is used by the automated classification algorithms.We use here the linear Support Vector Machine (SVM) and the Bagging Trees methods. For the learning process we use several EMG signals and in different parts of the muscle. Only one recorded electromyography EMG signal per subject is used for the diagnostic test. We evaluate the k—fold cross-validation and the confusion matrix for both models. The accuracy is 77.3% for the SVM and 68.2% for the Bagging Trees. These are the first developments of this tool to...
Classification of EMG Signals for Assessment of Neuromuscular Disorders
International Journal of Electronics and Electrical Engineering, 2014
An accurate and computationally efficient means of feature extraction of electromyographic (EMG) signal patterns has been the subject of considerable research effort in recent years. Quantitative analysis of EMG signals provides an important source of information for the classification of neuromuscular disorders. The objective of this study is to discriminate between normal (NOR), myopathic (MYO) and neuropathic (NEURO) subjects. The experiment consisted of 22 pathogenic (11 MYO and 11 NEURO) and 12 healthy persons. The signals were recorded at 30% Maximum Voluntary Contraction (MVC) for 5 seconds. Features of MUAPs extracted in time have been quantitatively analysed. We have used binary SVM for classification. Separation of normal subjects from neuromuscular disease subjects has an accuracy of 83.45%, whereas separation of subjects from the two types of subjects (myopathic and neuropathic) has an accuracy of 68.29% which is again high.
Comparison of machine learning algorithms for EMG signal classification
Periodicals of Engineering and Natural Sciences (PEN), 2020
The use of muscle activation signals in the control loop in biomechatronics systems is extremely important for effective and stable control. One of the methods used for this purpose is motion classification using electromyography (EMG) signals that reflect muscle activation. Classifying these signals with variable amplitude and frequency is a difficult process. On the other hand, EMG signal characteristics change over time depending on the person, task and duration. Various artificial intelligence-based methods are used for movement classification. One of these methods is machine learning. In this study, a total of 24 different models of 6 main machine learning algorithms were used for motion classification. With these models, 7 different wrist movements (rest, grip, flexion, extension, radial deviation, ulnar deviation, expanded palm) are classified. Test studies were carried out with 8 channels of EMG data taken from 4 subjects. Classification performances were compared in terms o...
Robust Classification of Intramuscular EMG Signals to Aid the Diagnosis of Neuromuscular Disorders
IEEE Open Journal of Engineering in Medicine and Biology
This article presents the design and validation of an accurate automatic diagnostic system to classify intramuscular EMG (iEMG) signals into healthy, myopathy, or neuropathy categories to aid the diagnosis of neuromuscular diseases. Methods: First, an iEMG signal is decimated to produce a set of "disjoint" downsampled signals, which are decomposed by the lifting wavelet transform (LWT). The Higuchi's fractal dimensions (FDs) of LWT coefficients in the subbands are computed. The FDs of LWT subband coefficients are fused with one-dimensional local binary pattern derived from each downsampled signal. Next, a multilayer perceptron neural network (MLPNN) determines the class labels of downsampled signals. Finally, the sequence of class labels is fed to the Boyer-Moore majority vote (BMMV) algorithm, which assigns a class to every iEMG signal. Results: The MLPNN-BMMV classifier was experimented with 250 iEMG signals belonging to three categories. The performance of the classifier was validated in comparison with state-of-the-art approaches. The MLPNN-BMMV has resulted in impressive performance measures (%) using a 10-fold cross-validation-accuracy = 99.87 ± 0.25, sensitivity (normal) = 99.97 ± 0.13, sensitivity (myopathy) = 99.68 ± 0.95, sensitivity (neuropathy) = 99.76 ± 0.66, specificity (normal) = 99.72 ± 0.61, specificity (myopathy) = 99.98 ± 0.10, and specificity (neuropathy) = 99.96 ± 0.14-surpassing the existing approaches. Conclusions: A future research direction is to validate the
Emg Based Diagnosis of Myopathy and Neuropathy Using Machine Learning Techniques
2020
Myopathy and Neuropathy are nonprogressive and progressive neuromuscular disorders which weakens the muscles and nerves respectively. Electromyography (EMG) signals are bio signals obtained from the individual muscle cells. EMG based diagnosis for neuromuscular disorders is a safe and reliable method. Integrating the EMG signals with machine learning techniques improves the diagnostic accuracy. The proposed system performs analysis on the clinical raw EMG dataset which is obtained from the publicly available PhysioNet database. The twochannel raw EMG dataset of healthy, myopathy and neuropathy subjects are divided into samples. The Time Domain (TD) features are extracted from divided samples of each subject. The extracted features are annotated with the class label representing the state of the individual. The annotated features split into training and testing set in the standard ratio 70: 30. The comparative classification analysis on the complete annotated features set and promine...
Efficient training of neural network models in classification of electromyographic data
1995
THE APPLICATION of artificial neural networks (ANt'N) in the diagnosis of neuromuscular disorders based on electromyography (EMG) has recently been proposed (SCHtZAS et aL, 1990; PATTICHIS, 1992). Artificial neural network models have been trained to diagnose normal (NOR), motor neuron disease (MND) and myopathy (MYO) subjects successfully (PATTICHIS et al., 1990; PATTICHIS, 1992).
Techniques of EMG signal analysis and classification of Neuromuscular diseases
Artificial intelligence techniques are being used effectively in medical diagnostic tools to increase the diagnostic accuracy and provide additional knowledge. Electromyography (EMG) signals are becoming increasingly important in clinical and biomedical applications. Detection, processing and classification of EMG signals are very desirable because it allows a more standardized evaluation to discriminate between different neuromus-cular diseases. This paper reviews a brief explanation of the different features extraction and classification techniques for classifying EMG signals used in literatures. Wavelet Transform (WT), Principle Component Analysis (PCA), and Independent Component Analysis (ICA) are different feature extraction techniques. Literature presents different techniques to classify EMG data such as probabilistic neural network (PNN), Support Vector Machine (SVM), Artificial Neural Networks (ANN), etc. In this paper neuromuscular disease classification from electromyography (EMG) signals are proposed based on different combination of features extraction methods and types of classifiers. Combination of WT and SVM improved the classification accuracy than other combinations such as DWT with ANN, ICA with MLPN, PCA with ANN and DWT with PNN. Keywords: Electromyogram (EMG), Wavelet Transform (WT), Principle Component Analysis (PCA), Support Vector Machine (SVM), Multilayer Perceptron Neural Network (MLPNN), Probabilistic Neural Network (PNN).
EMG Signal Classification with Effective Features for Diagnosis
Advances in Intelligent Systems and Computing, 2020
Electromyography (EMG) signals are broadly used in various clinical or biomedical applications, prosthesis or rehabilitation devices, Muscle-Computer Interface (MCI), Evolvable Hardware Chip (EHW) development and many other applications. Electromyography (EMG) signal records the myopathy from nonlinear subjects in both time domain and frequency domain. It becomes very difficult to classify these various statuses. In this paper, a feature extraction and classification method of healthy and myopathy EMG signals are proposed where two features have been extracted on both healthy and myopathy EMG. Mean Squared Error (MSE) has been calculated to observe which feature will give better classification result. Then SVM is used to classify the extracted results. To evaluate the proposed model, a standard dataset collected from physionet.org is used where it shows higher accuracy than the conventional methods.
Effect of Machine Learning Techniques for Efficient Classification of EMG Patterns in Gait Disorders
IJEER, 2022
Gait disorder is very common in neurodegenerative diseases and differentiating among the same kinematic design is a very challenging task. The muscle activity is responsible for the creation of kinematic patterns. Hence, one optimal way to monitor this issue is to analyse the muscle pattern to identify the gait disorders. In this paper, we will investigate the possibility of identifying GAIT disorders using EMG patterns with the help of various machine learning algorithms. Twenty-five normal persons (13 male and 12 females, age around 28 years of age) and 21 persons having GAIT disorders (11 male and 10 females, age around 67 years of age). Four different machine learning algorithms have been used to identify EMG patterns to recognize healthy and unhealthy persons. The results obtained so far have been used to distinguish between GAIT disorders and healthy patients. Our proposed system can also prove that Recurrent Neural Network has achieved the best accuracy with 91.3 % in the case of two classes and 86.95 % in the case of three classes compared to other machine learning algorithms
Review on Feature Extraction and Classification of Neuromuscular Disorders
IJMTST, 2019
Electromyography is an efficient tool for the diagnosis of neuromuscular diseases. There are wide variety of neuromuscular diseases that affects the muscles and nervous system, in which the most important are Amyotrophic Lateral Sclerosis (ALS) and Myopathy. These diseases change the shape and characteristic of motor unit action potentials (MUAPs). By analyzing the EMG signals and MUAPs neuromuscular diseases can be diagnosed. This paper gives a brief review of various techniques used in the analysis of EMG signals for the diagnosis of neuromuscular diseases. Various features that are extracted from the signals in time domain, frequency domain and time-frequency domain and different classification techniques and their performance are also studied in this paper.