HIP-1998-67/TH Canonical structure of Yang-Mills theory (original) (raw)

Canonical structure of Yang-Mills theory

Christofer Cronström

1998

View PDFchevron_right

HIP-1999-33/TH Canonical structure and boundary conditions in Yang-Mills theory †)

Christofer Cronström

1999

View PDFchevron_right

Canonical structure and boundary conditions in Yang-Mills theory †)

Christofer Cronström

arXiv: High Energy Physics - Theory, 1999

View PDFchevron_right

HIP-1998-61/TH The generalisation of the Coulomb gauge to Yang-Mills theory

Christofer Cronström

1998

View PDFchevron_right

TH The generalisation of the Coulomb gauge to Yang-Mills theory

Christofer Cronström

1998

View PDFchevron_right

The Generalisation of the Coulomb Gauge to Yang-Mills Theory

Christofer Cronström

1998

View PDFchevron_right

The Hamiltonian analysis for Yang–Mills theory on

Abhishek Agarwal

Nuclear Physics B, 2009

View PDFchevron_right

On the Hamiltonian formulation of Yang--Mills gauge theories

Danilo Bruno

2005

View PDFchevron_right

Generalization of Yang-Mills Theory

George Savvidy

2005

View PDFchevron_right

Geometric Foundations of Classical Yang-Mills Theory

Gabriel Catren

View PDFchevron_right

Covariant Canonical Method for Yang-Mills Theory Expressed as a Constrained BF-Like Theory

Alberto Escalante

Advances in Mathematical Physics, 2012

View PDFchevron_right

Towards a manifestly gauge invariant and universal calculus for Yang-Mills theory

Antonio Gatti

Arxiv preprint hep-th/0209130, 2002

View PDFchevron_right

Gauge-invariant ground state for canonically quantized Yang-Mills theory

Rachel Maitra

2008

View PDFchevron_right

SU(N) Quantum Yang–Mills theory in two dimensions: A complete solution

Abhay Ashtekar

Journal of Mathematical Physics, 1997

View PDFchevron_right

The Yang-Mills fields — from the gauge theory to the mechanical model

Radu Constantinescu

Central European Journal of Physics, 2009

View PDFchevron_right

The geometrical setting of gauge theories of the Yang-Mills type

Michael Obusuk Daniel

Reviews of Modern Physics, 1980

View PDFchevron_right

Koopman-von Neumann formulation of classical Yang-Mills theories: I

Paolo Carta

Annalen der Physik, 2006

View PDFchevron_right

Functional approach to classical Yang-Mills theories

Paolo Carta

Nuclear Physics B - Proceedings Supplements, 2002

View PDFchevron_right

Non-uniqueness of quantized Yang - Mills theories

Michael Dütsch

Journal of Physics A: Mathematical and General, 1996

View PDFchevron_right

Yang-Mills quantum mechanics

George Savvidy

Physics Letters B, 1985

View PDFchevron_right

Towards a solution of pure Yang–Mills theory in dimensions

Laurent Freidel

Physics Letters B, 2006

View PDFchevron_right

On covariant and canonical Hamiltonian formalisms for gauge theories

Alejandro Corichi, Tatjana Vukašinac, Juan Reyes

2023

View PDFchevron_right

Quantization of classical singular solutions in Yang-Mills theory

Vladimir Dzhunushaliev

Il Nuovo Cimento B, 2002

View PDFchevron_right

Quantum Yang-Mills Theory

Edward Witten, A. Jaffe

2000

View PDFchevron_right

On pure Yang-Mills theory in 3+1 dimensions: Hamiltonian, vacuum and gauge invariant variables

Laurent Freidel

arXiv: High Energy Physics - Theory, 2006

View PDFchevron_right

Galilean Yang-Mills theory

Aditya Mehra

Journal of High Energy Physics, 2016

View PDFchevron_right

Geometrical aspects in Yang–Mills gauge theories

S. Vignolo

Journal of Physics A: Mathematical and General, 2004

View PDFchevron_right

Gauge-invariant potentials from Yang-Mills theory

Danilo Velásquez Romero

Annals of Physics, 1985

View PDFchevron_right

Ja n 20 16 Gauge Theory by canonical Transformations

J. Kirsch, David Vasak

2018

View PDFchevron_right

A proposal for a manifestly gauge invariant and universal calculus in Yang-Mills theory

Tim Morris

Physical Review D, 2003

View PDFchevron_right

Generalized Yang-Mills theory and gravity

Pei-ming Ho

Physical Review D, 2016

View PDFchevron_right

Integral form of Yang-Mills equations and its gauge invariant conserved charges

Gabriel Luchini, L. Ferreira

Physical Review D, 2012

View PDFchevron_right

Generalization of the Yang–Mills theory

George Savvidy

International Journal of Modern Physics A, 2016

View PDFchevron_right