Bloch surface waves confined in one dimension with a single polymeric nanofibre (original) (raw)
Related papers
Guided Bloch Surface Waves on Ultrathin Polymeric Ridges
Nano Letters, 2010
We present a direct evidence of Bloch surface waves (BSWs) waveguiding on ultrathin polymeric ridges, supported by near-field measurements. It is demonstrated that near-infrared BSWs sustained by a silicon-based multilayer can be locally coupled and guided through dielectric ridges of nanometric thickness with low propagation losses. Using a conventional prism-based configuration, we demonstrate a wavelength-selective BSW coupling inside and outside the ridge. Such a result can open interesting opportunities in surface wave-mediated sensing applications, where light could be selectively coupled in specific regions defined by nanometric reliefs.
Diffraction-Free Bloch Surface Waves
ACS nano, 2017
Here, we demonstrate a diffraction-free Bloch surface wave sustained on all-dielectric multilayers that does not diffract after being passed through three obstacles or across a single mode fiber. It can propagate in a straight line for distances longer than 110 μm at a wavelength of 633 nm and could be applied as an in-plane optical virtual probe both in air and in an aqueous environment. Its ability to be used in water, its long diffraction-free distance, and its tolerance to multiple obstacles make this wave ideal for certain applications in areas such as the biological sciences, where many measurements are made on glass surfaces or for which an aqueous environment is required, and for high-speed interconnections between chips, where low loss is necessary.
Manipulating Bloch surface waves in 2D: a platform concept-based flat lens
Light: Science & Applications, 2014
At the end of the 1970s, it was confirmed that dielectric multilayers can sustain Bloch surface waves (BSWs). However, BSWs were not widely studied until more recently. Taking advantage of their high-quality factor, sensing applications have focused on BSWs. Thus far, no work has been performed to manipulate and control the natural surface propagations in terms of defined functions with two-dimensional (2D) components, targeting the realization of a 2D system. In this study, we demonstrate that 2D photonic components can be implemented by coating an in-plane shaped ultrathin (l/15) polymer layer on the dielectric multilayer. The presence of the polymer modifies the local effective refractive index, enabling direct manipulation of the BSW. By locally shaping the geometries of the 2D components, the BSW can be deflected, diffracted, focused and coupled with 2D freedom. Enabling BSW manipulation in 2D, the dielectric multilayer can play a new role as a robust platform for 2D optics, which can pave the way for integration in photonic chips. Multiheterodyne near-field measurements are used to study light propagation through micro-and nano-optical components. We demonstrate that a lens-shaped polymer layer can be considered as a 2D component based on the agreement between near-field measurements and theoretical calculations. Both the focal shift and the resolution of a 2D BSW lens are measured for the first time. The proposed platform enables the design of 2D all-optical integrated systems, which have numerous potential applications, including molecular sensing and photonic circuits.
Sensors, 2013
A one-dimensional photonic crystal (1DPC) based on a planar stack of dielectric layers is used as an optical transducer for biosensing, upon the coupling of TE-polarized Bloch Surface Waves (BSW). The structure is tailored with a polymeric layer providing a chemical functionality facilitating the covalent binding of orienting proteins needed for a subsequent grafting of antibodies in an immunoassay detection scheme. The polymeric layer is impregnated with Cy3 dye, in such a way that the photonic structure can exhibit an emissive behavior. The BSW-coupled fluorescence shift is used as a means for detecting refractive index variations occurring at the 1DPC surface, according to a label-free concept. The proposed working principle is successfully demonstrated in real-time tracking of protein G covalent binding on the 1DPC surface within a fluidic cell.
Fluorescence diffraction assisted by Bloch surface waves on a one-dimensional photonic crystal
New Journal of Physics, 2013
The use of linear and circular subwavelength gratings for improving the fluorescence extraction from organic dyes spotted on the surface of a one-dimensional photonic crystal is demonstrated. The one-dimensional photonic crystal hosting the gratings allows Bloch surface waves (BSWs) to be coupled in the visible range. We provide experimental evidence for the distributed diffraction of BSW-coupled fluorescence that is locally excited using a microscope-based setup. By diffracting the BSW-coupled fluorescence, a significant improvement in the total fluorescence collection is obtained as compared to a flat one-dimensional photonic crystal.
Near-field probing of Bloch surface waves in a dielectric multilayer using photonic force microscopy
Journal of the Optical Society of America B, 2016
The potential of photonic force microscopy (PFM) for probing the optical near-field in the vicinity of a dielectric multilayer is demonstrated. An experimental study of Bloch surface waves (BSWs) using PFM is described in detail. The applied technique is based on measuring the BSW-induced gradient force acting on a probe particle combined with precise control of the distance between the particle and the multilayer surface. The BSW-induced potential profile measured using PFM is presented. The force interaction between the probe and the BSW evanescent field is numerically studied. The results indicate that a polystyrene particle with a diameter of 1 μm does not significantly perturb the BSW field and can be used to probe the optical near-field intensity in an elegant, noninvasive manner.
Silver Nanowires for Reconfigurable Bloch Surface Waves
ACS Nano, 2017
The use of a single silver nanowire as a flexible coupler to transform a free space beam into a Bloch surface wave propagating on a dielectric multilayer is proposed. Based on Huygens 'Principle, when a Gaussian beam is focused onto a straight silver nanowire, a Bloch surface wave is generated and propagates perpendicular to the nanowire. By curving the silver nanowire, the surface wave can be focused. Furthermore, the spatial phase of the incident laser beam can be actively controlled with the aid of a spatial light modulator, resulting in the reconfigurable or dynamically controlled Bloch surface waves. The low cost of the chemically synthesized silver nanowires and the high flexibility with regard to tuning the spatial phase of the incident light make this approach very promising for various applications including optical micromanipulation, fluorescence imaging, and sensing.