Identification of (R)-2-butanol as a sex attractant pheromone of the white grub beetle, Dasylepida ishigakiensis (Coleoptera: Scarabaeidae), a serious sugarcane pest in the Miyako Islands of Japan (original) (raw)
Related papers
Attractants for the Green June Beetle (Coleoptera: Scarabaeidae)
Journal of Economic Entomology, 2009
The purpose of this study was to develop and evaluate lures for adult green June beetles, Cotinis nitida (L.) (Coleoptera: Scarabaeidae), for future use in a mass trapping program. Volatile organic compounds collected from headspace of green June beetles feeding on fermenting ripe apple (Malus spp.), the natural lure that elicits feeding aggregations, were identiÞed and conÞrmed by gas chromatography and mass spectrometry. Yellow funnel traps baited with 91% isopropanol or the Þve component blend were equally effective in eliciting aggregation behavior and often more attractive to green June beetles than the natural lure. In 2008, three trap lines adjacent and parallel to the perimeter of two vineyards, each with 12 Xpando yellow funnel traps baited with either 91% isopropanol or the Þve component blend, differed in catch of green June beetles across sample dates, and sample date by bait interaction but there were no differences among these two baits. A season total of 324,007 green June beetle were captured by these 36 baited traps. A brief review is included of fermentation volatiles attractive to insects. We conclude with the potential cost to use mass trapping against adult green June beetles.
Journal of Chemical Ecology, 1995
Male coconut rhinoceros beetles,Oryctes rhinoceros (L.), produce three sex-specific compounds, ethyl 4-methyloctanoate, ethyl 4-methylheptanoate, and 4-methyloctanoic acid, the first of which is an aggregation pheromone. Synthesis of these compounds involving conjugate addition of organocuprates to ethyl acrylate is reported. In field trapping experiments, (4S)-ethyl 4-methyloctanoate and the racemic mixture were equally attractive and 10 times more effective in attracting beetles than ethyl chrysanthemumate, a previously recommended attractant. Ethyl 4-methylheptanoate was as attractive as ethyl chrysanthemumate and more attractive than 4-methyloctanoic acid, but further studies are required before it can be classed as an aggregation pheromone. Compared to ethyl 4-methyloctanoate alone, combinations of the three male-produced compounds did not increase attraction, whereas addition of freshly rotting oil palm fruit bunches to pheromone-baited traps significantly enhanced attraction. With increasing dose, captures ofO. rhinoceros increased, but doses of 6, 9, and 18 mg/day were competitive with 30 mg/day lures. Newly designed vane traps were more effective in capturing beetles than were barrier or pitfall traps. Results of this study indicate that there is potential for using ethyl 4-methyloctanoate in operational programs to controlO. rhinoceros in oil palm plantations.
Journal of Chemical Ecology, 1991
The chemical basis underlying orientation to fruit and fungal odors was investigated for the dried-fruit beetle, Carpophilus hemipterus (L.). In wind-tunnel bioassays of walking and flight response from 1.8 m, beetles were attracted to odors of the yeast Saccharomyces cerevisiae on agar, aseptic banana, or banana inoculated with S. cerevisiae, although both banana substrates elicited greater response than the yeast alone. When presented in a two-choice bioassay, the yeast-inoculated banana attracted approximately twice as many beetles as did the aseptic banana. GC-MS analysis of the headspace volatiles above these odor sources revealed a somewhat more complex and concentrated volatile profile for yeast-inoculated banana than for aseptic banana. The odor from yeast on agar had fewer components, and these were present at lower concentrations than the odors of either banana substrate. By blending mineral-oil or aqueous solutions of the 18 components of inoculated-banana odor in varying concentrations, it was possible to mimic closely the headspace profile of the natural odor. This synthetic odor also elicited beetle attraction in the wind tunnel at levels comparable to the inoculated banana. Through a series of bioassays in which individual components were subtracted from or added to a synthetic odor blend, it was determined that ethyl acetate, acetaldehyde, 2-pentanol, and 3-methylbutanol comprised the simplest blend of compounds evoking full behavioral response. However, 2-methylpropanol or butanol were apparently interchangeable with 3-methylbutanol in this blend, and comparable response could also be elicited by replacing acetaldehyde with a combination of both 2-pentanone and 3-hydroxy-2-butanone. Thus, our results suggest that this generalist insect
Journal of Chemical Ecology, 1994
The Maladera matrida beetle (Coleoptera, Scarabaeidae, Melolonthinae), a relatively new species to science, was first identified in Israel in 1983. In the course of field observations it was found that adult M. matrida beetles emerged from the soil at sunset to feed and mate. During the first 20 rain of flight, most of the beetles were males. The females emerged shortly afterwards, and aggregations numbering 20-30 individuals with equal proportions of males and females were eventually formed on peanut plants. Laboratory olfactometer bioassays showed that peanut leaves (food) attracted both males and females. Field-trapping experiments and olfactometer studies showed that M. matrida beetles were highly attracted by live virgin females in the presence of food (cut-up peanut leaves). Another set of field trapping experiments indicated that airborne volatiles produced by live virgin females plus food had the same attracting ability as live virgin females plus food. The attraction exerted by the combination of live virgin females and peanut leave volatiles suggests a synergism effect. Accordingly, we propose a two-stage mechanism of chemical communication in the M. matrida beetles: first, the males cause mechanical damage to the host plant to attract both sexes; later, the females emit attractants (sex pheromone) while eating or shortly thereafter.
Scientific Reports, 2019
Species-specific behavior-modifying chemicals have been used for more than 50 years for monitoring and management of insect pests of agriculture and human health. Elaterid beetle larvae are among insect pests in soil that are increasingly problematic, in part due to the lack of effective management strategies. However, little is known about the insect-produced chemicals that mediate the reproductive behavior of these pests. We used chemical and behavioral studies to identify, synthesize, and field test the sex attractant pheromone of adults of Melanotus communis, commonly called the corn wireworm, the larvae of which are economically important pests of U.S. crops. Our results indicated that a single female-produced chemical, 13-tetradecenyl acetate, was strongly attractive to conspecific male beetles, and did not appear to attract other species. In field evaluations, male M. communis exhibited a dose-dependent response to this compound. In a trial comparing different slow-release di...
Aggregation pheromones of almond bark beetle Scolytus amygdali (Coleoptera: Scolytidae)
The almond bark beetle (ABB), Scolytus amygdali (Coleoptera: Scolytidae), is a pest of stone fruits in the Mediterranean region and southern Europe. Adults feeding on buds cause most of the damage. Applications of non-selective insecticides, burning of dead trees and pruning slash are environmentally unsafe and are often ineffective for ABB control. Preliminary experiments with ABB colonizing branches indicated the existence of an aggregation pheromone, and prompted us to identify it. Volatiles emitted by female ABB boring into plum branches were collected on Porapak Q and eluted with hexane. GC-EAD analyses of volatile extracts, using female antennae as an electroantennographic detector, revealed four EAD-active candidate pheromone components, as follows: (3S,4S)-4-methyl-3-heptanol (SS-I), most abundant and EAD-active component; (3S,4S)-4-methyl-3hexanol (SS-II); (5S,7S)-7-methyl-1,6-dioxaspiro[4,5]decane (III); and 7-methyl-1,6-dioxaspiro [4,5]dec-8-ene [IV], the first unsaturated spiroaketal found in insects. In field experiments (1994)(1995)(1996)(1997)(1998) using funnel traps baited with polyethylene pheromone dispensers, SS-I unlike SS-II was attractive by itself, while SS-I plus SS-II at a ratio of 2:1 was optimally attractive. Addition of stereoisomeric mixtures of III and/or IV did not affect trap captures. Candidate kairomones ethanol and propanol did not affect total trap catches. Methanol, in contrast, strongly inhibited attraction of beetles to pheromone-baited traps and prevented colonization of cut branches. It failed, however, to reduce damage to tree buds caused by ABB maturation feeding. Although SS-I plus SS-II was twice as attractive as the stereoisomeric mixtures of 4-methyl-3-heptanol plus 4-methyl-3-hexanol, these readily obtainable stereoisomeric mixtures can be used for both pheromone-based monitoring and control of ABB populations.
Journal of Chemical Ecology, 1997
Coupled gas chromatographic–electroantennographic detection (GC-EAD) analyses and coupled GC-mass spectrometry (MS) of volatiles produced by male and female West Indian sugarcane weevils (WISW), Metamasius hemipterus sericeus (Oliv.), revealed eight male specific, EAD-active compounds: 3-pentanol (1), 2-methyl-4-heptanol (2), 2-methyl-4-octanol (3), 4-methyl-5-nonanol (4), and the corresponding ketones. In field experiments in Florida, alcohols 1–4 in combination with sugarcane were most attractive, whereas addition of the ketones or replacement of alcohols with ketones significantly reduced attraction. In Costa Rica field experiments testing alcohols 1–4 singly and in all binary, ternary, and quaternary combinations revealed 4 in combination with 2 was the major aggregation pheromone, equally attracting male and female WISW. Stereoisomeric 4 and (4S,5S)-4, the only isomer produced by WISW, were equally attractive. Addition of 4S-, 4R- or (±)-2 to (4S,5S)-4 significantly enhanced attraction. Sugarcane stalks in combination with 2 plus 4 (ratio of 1:8) were highly synergistic, whereas EAD-active sugarcane volatiles ethyl acetate, ethyl propionate, or ethyl butyrate only moderately increased attractiveness of the pheromone lure.
2021
The coconut rhinoceros beetle, Oryctes rhinoceros (Linnaeus 1758) (Coleoptera: Scarabaeidae: Dynastinae) (CRB), is endemic to tropical Asia where it damages both coconut and oil palm. A new invasion by CRB occurred on Guam in 2007 and eradication attempts failed using commonly applied O. rhinoceros nudivirus (OrNV) isolates. This and subsequent invasive outbreaks were found to have been caused by a previously unrecognized haplotype, CRB-G, which appeared to be tolerant to OrNV. The male-produced aggregation pheromone of the endemic, susceptible strain of O. rhinoceros (CRB-S) was previously identified as ethyl 4-methyloctanoate. There were anecdotal reports that the commercial lures containing this compound were not attractive to CRB-G and the aim of this work was to identify the pheromone of CRB-G. Initial collections of volatiles from virgin male and female CRB-G adults failed to show any male- or female-specific compounds as candidate pheromone components. Only after five months ...