Identification of Tree Species in Japanese Forests based on Aerial Photography and Deep Learning (original) (raw)
Related papers
Resnet-Based Tree Species Classification Using Uav Images
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019
Abstract. Tree species classification at individual tree level is a challenging problem in forest management. Deep learning, a cutting-edge technology evolved from Artificial Intelligence, was seen to outperform other techniques when it comes to complex problems such as image classification. In this work, we present a novel method to classify forest tree species through high resolution RGB images acquired with a simple consumer grade camera mounted on a UAV platform using Residual Neural Networks. We used UAV RGB images acquired over three years that varied in numerous acquisition parameters such as season, time, illumination and angle to train the neural network. To begin with, we have experimented with limited data towards the identification of two pine species namely red pine and white pine from the rest of the species. We performed two experiments, first with the images from all three acquisition years and the second with images from only one acquisition year. In the first exper...
Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, bio-mass estimation, etc. Deep Neural Networks (DNN) have shown superior results when comparing with conventional machine learning methods such as Multi-Layer Perceptron (MLP) in cases of huge input data. The objective of this research was to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were employed to classify tree species in a test site in Finland. The classifiers were trained with a dataset of 3039 manually labelled trees. Then the accuracies were assessed by employing independent datasets of 803 records. To find the most efficient set of feature combination, we compare the perform...
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
The classification of tree species can significantly benefit from high spatial and spectral information acquired by unmanned aerial vehicles (UAVs) associated with advanced feature extraction and classification methods. Different from the traditional feature extraction methods, that highly depend on user's knowledge, the convolutional neural network (CNN)-based method can automatically learn and extract the spatial-related features layer by layer. However, in order to capture significant features of the data, the CNN classifier requires a large number of training samples, which are hardly available when dealing with tree species in tropical forests. This study investigated the following topics concerning the classification of 14 tree species in a subtropical forest area of Southern Brazil: i) the performance of the CNN method associated with a previous step to increase and balance the sample set (data augmentation) for tree species classification as compared to the conventional machine learning methods support vector machine (SVM) and random forest (RF) using the original training data; ii) the performance of the SVM and RF classifiers when associated with a data augmentation step and spatial features extracted from a CNN. Results showed that the CNN classifier outperformed the conventional SVM and RF classifiers, reaching an overall accuracy (OA) of 84.37% and Kappa of 0.82. The SVM and RF had a poor accuracy with the original spectral bands (OA 62.67% and 59.24%) but presented an increase between 14% and 21% in OA when associated with a data augmentation and spatial features extracted from a CNN.
Drone Aerial Image Identification of Tropical Forest Tree Species using the Mask R-CNN
International Journal of Innovative Computing
Tropical forests have a wide variety of species and support environmental activities. The drone's image resolution is 90% more accurate than satellite data. It boosted productivity, safety, and the capacity to make better decisions by comparing archived and prospective images. Labeling tree species in heavily forested locations is labor-intensive, time-consuming, and expensive. This research seeks to design a new model for classifying tree species based on drone imagery, then test and assess its effectiveness. This study shows that drone technology can diminish productivity per hectare compared to conventional ground approaches. The study shows drones are more productive than ground approaches. The approach is feasible since it targets commercial timber species in the forest's higher stratum. Drones are cheaper than satellite data, therefore they're being used more in forest management and deep learning. Drones allow flexible, high-resolution data collection. This resear...
Giscience & Remote Sensing, 2020
The classification of tree species can significantly benefit from high spatial and spectral information acquired by unmanned aerial vehicles (UAVs) associated with advanced classification methods. This study investigated the following topics concerning the classification of 16 tree species in two subtropical forest fragments of Southern Brazil: i) the potential integration of UAV-borne hyperspectral images with 3D information derived from their photogrammetric point cloud (PPC); ii) the performance of two machine learning methods (support vector machine-SVM and random forest-RF) when employing different datasets at a pixel and individual tree crown (ITC) levels; iii) the potential of two methods for dealing with the imbalanced sample set problem: a new weighted SVM (wSVM) approach, which attributes different weights to each sample and class, and a deep learning classifier (convolutional neural network-CNN), associated with a previous step to balance the sample set; and finally, iv) the potential of this last classifier for tree species classification as compared to the above mentioned machine learning methods. Results showed that the inclusion of the PPC features to the hyperspectral data provided a great accuracy increase in tree species classification results when conventional machine learning methods were applied, between 13 and 17% depending on the classifier and the study area characteristics. When using the PPC features and the canopy height model (CHM), associated with the majority vote (MV) rule, the SVM, wSVM and RF classifiers reached accuracies similar to the CNN, which outperformed these classifiers for both areas when considering the pixel-based classifications (overall accuracy of 84.4% in Area 1, and 74.95% in Area 2). The CNN was between 22% and 26% more accurate than the SVM and RF when only the hyperspectral bands were employed. The wSVM provided a slight increase in accuracy not only for some lesser represented classes, but also some major classes in Area 2. While conventional machine learning methods are faster, they demonstrated to be less stable to changes in datasets, depending on prior segmentation and hand-engineered features to reach similar accuracies to those attained by the CNN. To date, CNNs have been barely explored for the classification of tree species, and CNNbased classifications in the literature have not dealt with hyperspectral data specifically focusing on tropical environments. This paper thus presents innovative strategies for classifying tree species in subtropical forest areas at a refined legend level, integrating UAV-borne 2D hyperspectral and 3D photogrammetric data and relying on both deep and conventional machine learning approaches.
Remote Sensing of Environment, 2021
During the last two decades, forest monitoring and inventory systems have moved from field surveys to remote sensing-based methods. These methods tend to focus on economically significant components of forests, thus leaving out many factors vital for forest biodiversity, such as the occurrence of species with low economical but high ecological values. Airborne hyperspectral imagery has shown significant potential for tree species classification, but the most common analysis methods, such as random forest and support vector machines, require manual feature engineering in order to utilize both spatial and spectral features, whereas deep learning methods are able to extract these features from the raw data. Our research focused on the classification of the major tree species Scots pine, Norway spruce and birch, together with an ecologically valuable keystone species, European aspen, which has a sparse and scattered occurrence in boreal forests. We compared the performance of three-dimensional convolutional neural networks (3D-CNNs) with the support vector machine, random forest, gradient boosting machine and artificial neural network in individual tree species classification from hyperspectral data with high spatial and spectral resolution. We collected hyperspectral and LiDAR data along with extensive ground reference data measurements of tree species from the 83 km 2 study area located in the southern boreal zone in Finland. A LiDAR-derived canopy height model was used to match ground reference data to aerial imagery. The best performing 3D-CNN, utilizing 4 m image patches, was able to achieve an F1-score of 0.91 for aspen, an overall F1-score of 0.86 and an overall accuracy of 87%, while the lowest performing 3D-CNN utilizing 10 m image patches achieved an F1-score of 0.83 and an accuracy of 85%. In comparison, the support-vector machine achieved an F1-score of 0.82 and an accuracy of 82.4% and the artificial neural network achieved an F1-score of 0.82 and an accuracy of 81.7%. Compared to the reference models, 3D-CNNs were more efficient in distinguishing coniferous species from each other, with a concurrent high accuracy for aspen classification. Deep neural networks, being black box models, hide the information about how they reach their decision. We used both occlusion and saliency maps to interpret our models. Finally, we used the best performing 3D-CNN to
Urban Tree Species Classification Using Aerial Imagery
ArXiv, 2021
Urban trees help regulate temperature, reduce energy consumption, improve urban air quality, reduce wind speeds, and mitigating the urban heat island effect. Urban trees also play a key role in climate change mitigation and global warming by capturing and storing atmospheric carbon-dioxide which is the largest contributor to greenhouse gases. Automated tree detection and species classification using aerial imagery can be a powerful tool for sustainable forest and urban tree management. Hence, This study first offers a pipeline for generating labelled dataset of urban trees using Google Map's aerial images and then investigates how state of the art deep Convolutional Neural Network models such as VGG and ResNet handle the classification problem of urban tree aerial images under different parameters. Experimental results show our best model achieves an average accuracy of 60% over 6 tree species.
Journal of Unmanned Vehicle Systems
Tree species identification at the individual tree level is crucial for forest operations and management, yet its automated mapping remains challenging. Emerging technology, such as the high-resolution imagery from unmanned aerial vehicles (UAV) that is now becoming part of every forester’s surveillance kit, can potentially provide a solution to better characterize the tree canopy. To address this need, we have developed an approach based on a deep Convolutional Neural Network (CNN) to classify forest tree species at the individual tree-level that uses high-resolution RGB images acquired from a consumer-grade camera mounted on a UAV platform. This work explores the ability of the Dense Convolutional Network (DenseNet) to classify commonly available economic coniferous tree species in eastern Canada. The network was trained using multitemporal images captured under varying acquisition parameters to include seasonal, temporal, illumination, and angular variability. Validation of this ...
Deepening the Accuracy of Tree Species Classification: A Deep Learning-Based Methodology
Forests
The utilization of multi-temporally integrated imageries, combined with advanced techniques such as convolutional neural networks (CNNs), has shown significant potential in enhancing the accuracy and efficiency of tree species classification models. In this study, we explore the application of CNNs for tree species classification using multi-temporally integrated imageries. By leveraging the temporal variations captured in the imageries, our goal is to improve the classification models’ discriminative power and overall performance. The results of our study reveal a notable improvement in classification accuracy compared to previous approaches. Specifically, when compared to the random forest model’s classification accuracy of 84.5% in the Gwangneung region, our CNN-based model achieved a higher accuracy of 90.5%, demonstrating a 6% improvement. Furthermore, by extending the same model to the Chuncheon region, we observed a further enhancement in accuracy, reaching 92.1%. While addit...
Aerial Identification of Amazonian Palms in High-Density Forest Using Deep Learning
Forests
This paper presents an integrated aerial system for the identification of Amazonian Moriche palm (Mauritia flexuosa) in dense forests, by analyzing the UAV-captured RGB imagery using a Mask R-CNN deep learning approach. The model was trained with 478 labeled palms, using the transfer learning technique based on the well-known MS COCO framework©. Comprehensive in-field experiments were conducted in dense forests, yielding a precision identification of 98%. The proposed model is fully automatic and suitable for the identification and inventory of this species above 60 m, under complex climate and soil conditions.