Optimal control of rapid thermal annealing in a semiconductor process (original) (raw)
Abstract
This study focuses on the optimal control of rapid thermal annealing (RTA) used in the formation of ultrashallow junctions needed in next-generation microelectronic devices. Comparison of different parameterizations of the optimal trajectories shows that linear profiles give the best combination of minimizing junction depth and sheet resistance. Worst-case robustness analysis of the optimal control trajectory motivates improvements in feedback control implementations for these processes. This is the first time that the effects of model uncertainties and control implementation inaccuracies are rigorously quantified for RTA.
Figures (8)
Fig. 1. Typical rapid thermal anneal temperature program, which consists of a stabilization step and a spike anneal (i.e., a fast linear heating step starting ~650 °C, followed by a natural cool down step).
Maximum a posteriori estimates of TED energetics Table 1
Fig. 2. Comparison of experimental and simulated boron profiles us- ing the TED model in conjunction with the MAP parameters. The junction depth is defined as the depth from the surface at which the total boron concentration reaches 10'® atoms/cm*: on the order of 50 nm in the present cases. “Energy is from ML estimation of a single published value.
Fig. 3. Comparison of the junction depth and sheet resistance date from experimental studies employing various annealing conditions, the Sematech curve, and the TED simulations.
Upper and lower bounds for & can be efficiently com- puted using iterative 4 computations or skewed-y anal- ysis (for details, see [10]). where k is any real number, 4 is the structured singular value, the perturbation A = diag{A,, 4,;,6.} consists of independent real scalar blocks A, and a complex scalar dc, and
Fig. 5. Simulations of after-anneal boron profiles employing the op- timal RTA programs.
Fig. 4. The optimal spike anneal programs employing linear and quadratic parameterizations.
Worst-case analysis of junction depth deviations (in nm) with respect to uncertainties in model parameters and control implementation
Loading Preview
Sorry, preview is currently unavailable. You can download the paper by clicking the button above.
References (47)
- D.F. Downey, S.W. Falk, A. Bertuch, F.S.D. Marcus, Effects of fast rapid thermal anneals on sub-keV boron and BF 2 ion implants, Journal of Electronic Materials 28 (1999) 1340-1344.
- S. Shishiguchi, A. Mineji, T. Hayashi, S. Saito, Boron implanted shallow junction formation by high-temperature/short-time/high- ramping-rate (400 C/sec) RTA, in: Symposium on VLSI Tech- nology, Kyoto, Japan, 1997. Paper 7B-3.
- G. Mannino, P.A. Stolk, N.E.B. Cowern, W.B. de Boer, A.G. Dirks, F. Roozeboom, J.G.M. van Berkum, P.H. Woerlee, N.N. Toan, Effect of heating ramp rates on transient enhanced diffusion of ion-implanted silicon, Applied Physics Letters 78 (2001) 889- 891.
- G. Gelpey, K. Elliot, D. Camm, S. McCoy, J. Ross, D.F. Downey, E.A. Arevalo, Advanced annealing for sub-130 nm junction formation, in: 201st Meeting of the Electrochemical Society, Philadelphia, PA, 2002. Abstract 735.
- S.C. Jain, W. Schoenmaker, R. Lindsay, P.A. Stolk, S. Decoutere, M. Willander, H.E. Maes, Transient enhanced diffusion of boron in Si, Journal of Applied Physics 91 (2002) 8919-8941.
- T.F. Edgar, S.W. Butler, W.J. Campbell, C. Pfeiffer, C. Bode, S.B. Hwang, K.S. Balakrishnan, J. Hahn, Automatic control in microelectronics manufacturing: practices, challenges, and possi- bilities, Automatica 36 (2000) 1567-1603.
- M.Y.L. Jung, E.G. Seebauer, New physics for modeling transient enhanced diffusion in RTP, in: Proceedings of the Rapid Thermal and other Short-Time Processing Technologies, vol. 2000-9, ECS, Toronto, Canada, 2000, pp. 15-20.
- R. Gunawan, M.Y.L. Jung, E.G. Seebauer, R.D. Braatz, Max- imum a posteriori estimation of transient enhanced diffusion energetics, AIChE Journal 49 (2003) 2114-2123.
- D.L. Ma, S.H. Chung, R.D. Braatz, Worst-case performance analysis of optimal batch control trajectories, AIChE Journal 45 (1999) 1469-1476.
- D.L. Ma, R.D. Braatz, Worst-case analysis of finite-time control policies, IEEE Transactions on Control Systems Technology 9 (2001) 766-774.
- C.S. Nichols, G.F.A. van de Walle, S.T. Pantelides, Mechanisms of dopant impurity diffusion in silicon, Physical Review B 40 (1989) 5484-5496.
- J. Zhu, T.D. de la Rubia, L.H. Yang, C. Mailhiot, G.H. Gilmer, Ab initio pseudopotential calculations of B diffusion and pairing in Si, Physical Review B 54 (1996) 4741-4747.
- J. Zhu, Ab initio pseudopotential calculations of dopant diffusion in Si, Computational Materials Science 12 (1998) 309-318.
- N.E.B. Cowern, G.F.A. van de Walle, D.J. Gravesteijn, C.J. Vriezema, Experiments on atomic-scale mechanisms of diffusion, Physical Review Letters 67 (1991) 212-215.
- N.E.B. Cowern, G.F.A. van de Walle, P.C. Zalm, D.J. Oostra, Reactions of point defects and dopant atoms in silicon, Physical Review Letters 69 (1992) 116-119.
- W. Windl, M.M. Bunea, R. Stumpf, S.T. Dunham, M.P. Masquelier, First-principles study of boron diffusion in silicon, Physical Review Letters 83 (1999) 4345-4348.
- B. Sadigh, T.J. Lenosky, S.K. Theiss, M.-J. Caturla, T.D. de la Rubia, M.A. Foad, Mechanism of boron diffusion in silicon: an ab initio and kinetic monte carlo study, Physical Review Letters 83 (1999) 4341-4344.
- P. Alippi, L. Colombo, P. Ruggerone, Energetics and diffusivity of atomic boron in silicon by density-functional-based tight-binding simulations, Computational Materials Science 22 (2001) 44-48.
- P. Alippi, L. Colombo, P. Ruggerone, A. Sieck, G. Seifert, T. Frauenheim, Atomic-scale characterization of boron diffusion in silicon, Physical Review B 64 (2001) 075207.
- J.-W. Jeong, A. Oshiyama, Atomic and electronic structures of a boron impurity and its diffusion pathways in crystalline Si, Physical Review B 64 (2001) 235204.
- M.Y.L. Jung, R. Gunawan, R.D. Braatz, E.G. Seebauer, Pair diffusion and kick-out: relative contributions to diffusion of boron in silicon, Journal of Electrochemical Society, submitted for publication.
- R. Gunawan, M.Y.L. Jung, R.D. Braatz, E.G. Seebauer, Para- meter sensitivity analysis applied to modeling transient enhanced diffusion and activation of boron in silicon, Journal of Electro- chemical Society, in press.
- P.A. Stolk, H.J. Gossmann, D.J. Eaglesham, D.C. Jacobson, C.S. Rafferty, G.H. Gilmer, M. Jaraiz, J.M. Poate, H.S. Luftman, T.E. Haynes, Physical mechanisms of transient-enhanced dopant diffusion in ion-implanted silicon, Journal of Applied Physics 81 (1997) 6031-6050.
- E.J.H. Collart, A.J. Murrell, M.A. Foad, J.A. van den Berg, S. Zhang, D. Armour, R.D. Goldberg, T.S. Wang, A.G. Cullis, T. Clarysse, W. Vandervorst, Cluster formation during annealing of ultra-low-energy boron-implanted silicon, Journal of Vacuum Science and Technology B 18 (2000) 435-439.
- T.E. Haynes, D.J. Eaglesham, P.A. Stolk, H.J. Gossmann, D.C. Jacobson, J.M. Poate, Interactions of ion-implantation-induced interstitials with boron at high concentrations in silicon, Applied Physics Letters 69 (1996) 1376-1378.
- K.J. Laidler, Chemical Kinetics, Harper & Row, New York, NY, 1987.
- Z. Wang, E.G. Seebauer, Estimating pre-exponential factors for desorption from semiconductors: consequences for a priori process modeling, Applied Surface Science 181 (2001) 111-120.
- E.G. Seebauer, M.Y.L. Jung, Surface diffusion on metals, semiconductors and insulators, Chapter II, in: H.P. Benzel (Ed.), Landolt-B€ o ornstein Numerical Data and Functional Rela- tionships, Vol. III/42A, Springer Verlag, New York, 2001.
- D. Eaglesham, Dopants defects and diffusion, Physics World 8 (1995) 41-45.
- J.A. Van Vechten, Activation enthalpy of recombination- enhanced vacancy migration in Si, Physical Review B--Con- densed Matter 38 (1988) 9913-9919.
- J.A. Van Vechten, C.D. Thurmond, Entropy of ionisation and temperature variation of ionisation levels of defects in semicon- ductors, Physical Review B (Solid State) 14 (1976) 3539-3550.
- A. Agarwal, H.-J. Gossmann, A.T. Fiory, Effect of ramp rates during rapid thermal annealing of ion implanted boron for formation of ultra-shallow junctions, Journal of Electronic Materials 28 (1999) 1333-1339.
- A. Agarwal, H.-J. Gossmann, A.T. Fiory, Ultra-shallow junctions by ion implantation and rapid thermal annealing: spike-anneals, ramp rate effects, Material Research Society Symposium Proceed- ings 568 (1999) 19-30.
- A. Agarwal, Ultra-shallow junction formation using conventional ion implantation and rapid thermal annealing, in: International Conference on Ion Implantation Technology, Tyrol, Austria, 2000, pp. 293-299.
- E.C. Jones, E. Ishida, Shallow junction doping technologies for ULSI, Materials Science and Engineering R 24 (1998) 1-80.
- B.V. Zeghbroeck, Principles of Semiconductor Devices, 2002. Available from http://ece-www.colorado.edu/\~bart/book/.
- B. Peuse, A. Rosekrans, J. Gelpey, P. Dick, Dynamic temper- ature uniformity of RTP using single zone illumination, in: 1st International Rapid Thermal Processing Conference, 1993, p. 443.
- M.E. Law, S.M. Cea, Continuum based modeling of silicon integrated circuit processing: An object oriented approach, Computational Materials Science 12 (1998) 289-308.
- R.E. Bank, W.M. Coughran Jr., W. Fichtner, E.H. Grosse, D.J. Rose, R.K. Smith, Transient simulation of silicon devices and circuits, IEEE Transactions on Electron Devices ED-32 (1985) 1992-2007.
- M.J. Caturla, M.D. Johnson, T.D. de la Rubia, The fraction of substitutional boron in silicon during ion implantation and thermal annealing, Applied Physics Letters 72 (1998) 2736-2738.
- H. Kobayashi, I. Nomachi, S. Kusanagi, F. Nishiyama, Lattice site location of ultra-shallow implanted B in Si using ion beam analysis, in: K.S. Jones, M.D. Giles, P. Stolk, J. Matsuo, E.C. Jones (Eds.), Si Front-End Processing--Physics and Technology of Dopant-Defect Interactions III, Materials Research Society, Inc., Warrendale, PA, 2001, p. J5.3.
- M.Y.L. Jung, R. Gunawan, R.D. Braatz, E.G. Seebauer, Surface fermi level pinning: An electrical ''valve'' in transient enhanced diffusion, in: Materials Research Society Spring Meeting, San Francisco, CA, 2001. Presentation J4.21.
- W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, Cambridge University Press, New York, NY, 1992.
- Z. N e enyei, C. Grunwald, W. Lerch, J. Niess, D.F. Downey, R. Ostermeir, Competitive process analysis and some new optimiza- tion methods in RTP, in: Proceedings of the 6th International Conference on Advanced Thermal Processing of Semiconductors, Kyoto, Japan, 1998.
- A. Varma, M. Morbidelli, H. Wu, Parametric Sensitivity in Chemical Systems, Cambridge University Press, Melbourne, Australia, 1999.
- G.J. Balas, J.C. Doyle, K. Glover, A. Packard, R. Smith, l- Analysis and Synthesis Toolbox, The MathWorks, Inc., Natick, MA, 2001.
- P.J. Timans, Mattson Technology, private communications, 2002.