Seeing the World through Text: Evaluating Image Descriptions for Commonsense Reasoning in Machine Reading Comprehension (original) (raw)

Visually Grounded Commonsense Knowledge Acquisition

Proceedings of the AAAI Conference on Artificial Intelligence , Volume 37, Number 5, 2023

Large-scale commonsense knowledge bases empower a broad range of AI applications, where the automatic extraction of commonsense knowledge (CKE) is a fundamental and challenging problem. CKE from text is known for suffering from the inherent sparsity and reporting bias of commonsense in text. Visual perception, on the other hand, contains rich commonsense knowledge about real-world entities, e.g., (person, can hold, bottle), which can serve as promising sources for acquiring grounded commonsense knowledge. In this work, we present CLEVER, which formulates CKE as a distantLy supErVised multi-instancE leaRning problem, where models learn to summarize commonsense relations from a bag of images about an entity pair without any human annotation on image instances. To address the problem, CLEVER leverages vision-language pre-training models for deep understanding of each image in the bag, and selects informative instances from the bag to summarize commonsense entity relations via a novel contrastive attention mechanism. Comprehensive experimental results in held-out and human evaluation show that CLEVER can extract commonsense knowledge in promising quality, outperforming pre-trained language model-based methods by 3.9 AUC and 6.4 mAUC points. The predicted commonsense scores show strong correlation with human judgment with a 0.78 Spearman coefficient. Moreover, the extracted commonsense can also be grounded into images with reasonable interpretability. The data and codes can be obtained at https://github.com/thunlp/ CLEVER.

Bridging the Gap between Recognition-level Pre-training and Commonsensical Vision-language Tasks

Proceedings of the First Workshop on Commonsense Representation and Reasoning (CSRR 2022)

Large-scale visual-linguistic pre-training aims to capture the generic representations from multimodal features, which are essential for downstream vision-language tasks. Existing methods mostly focus on learning the semantic connections between visual objects and linguistic content, which tend to be recognitionlevel information and may not be sufficient for commonsensical reasoning tasks like VCR. In this paper, we propose a novel commonsensical vision-language pre-training framework to bridge the gap. We first augment the conventional image-caption pre-training datasets with commonsense inferences from a visuallinguistic GPT-2. To pre-train models on image, caption and commonsense inferences together, we propose two new tasks: masked commonsense modeling (MCM) and commonsense type prediction (CTP). To reduce the shortcut effect between captions and commonsense inferences, we further introduce the domain-wise adaptive masking that dynamically adjusts the masking ratio. Experimental results on downstream tasks, VCR and VQA, show the improvement of our pre-training strategy over previous methods. Human evaluation also validates the relevance, informativeness, and diversity of the generated commonsense inferences. Overall, we demonstrate the potential of incorporating commonsense knowledge into the conventional recognition-level visual-linguistic pre-training.

SGEITL: Scene Graph Enhanced Image-Text Learning for Visual Commonsense Reasoning

Proceedings of the AAAI Conference on Artificial Intelligence

Answering complex questions about images is an ambitious goal for machine intelligence, which requires a joint understanding of images, text, and commonsense knowledge, as well as a strong reasoning ability. Recently, multimodal Transformers have made a great progress in the task of Visual Commonsense Reasoning (VCR), by jointly understanding visual objects and text tokens through layers of cross-modality attention. However, these approaches do not utilize the rich structure of the scene and the interactions between objects which are essential in answering complex commonsense questions. We propose a Scene Graph Enhanced Image-Text Learning (SGEITL) framework to incorporate visual scene graph in commonsense reasoning. In order to exploit the scene graph structure, at the model structure level, we propose a multihop graph transformer for regularizing attention interaction among hops. As for pre-training, a scene-graph-aware pre-training method is proposed to leverage structure knowled...

Understanding ME? Multimodal Evaluation for Fine-grained Visual Commonsense

Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Visual commonsense understanding requires Vision Language (VL) models to not only understand image and text but also crossreference in-between to fully integrate and achieve comprehension of the visual scene described. Recently, various approaches have been developed and have achieved high performance on visual commonsense benchmarks. However, it is unclear whether the models really understand the visual scene and underlying commonsense knowledge due to limited evaluation data resources. To provide an indepth analysis, we present a Multimodal Evaluation (ME) pipeline to automatically generate question-answer pairs to test models' understanding of the visual scene, text, and related knowledge. We then take a step further to show that training with the ME data boosts model's performance in standard VCR evaluation. Lastly, our in-depth analysis and comparison reveal interesting findings: (1) semantically low-level information can assist learning of high-level information but not the opposite; (2) visual information is generally under utilization compared with text.

Enforcing Reasoning in Visual Commonsense Reasoning

ArXiv, 2019

The task of Visual Commonsense Reasoning is extremely challenging in the sense that the model has to not only be able to answer a question given an image, but also be able to learn to reason. The baselines introduced in this task are quite limiting because two networks are trained for predicting answers and rationales separately. Question and image is used as input to train answer prediction network while question, image and correct answer are used as input in the rationale prediction network. As rationale is conditioned on the correct answer, it is based on the assumption that we can solve Visual Question Answering task without any error - which is over ambitious. Moreover, such an approach makes both answer and rationale prediction two completely independent VQA tasks rendering cognition task meaningless. In this paper, we seek to address these issues by proposing an end-to-end trainable model which considers both answers and their reasons jointly. Specifically, we first predict t...

Abductive Commonsense Reasoning

ArXiv, 2020

Abductive reasoning is inference to the most plausible explanation. For example, if Jenny finds her house in a mess when she returns from work, and remembers that she left a window open, she can hypothesize that a thief broke into her house and caused the mess, as the most plausible explanation. While abduction has long been considered to be at the core of how people interpret and read between the lines in natural language (Hobbs et al., 1988), there has been relatively little research in support of abductive natural language inference and generation. We present the first study that investigates the viability of language-based abductive reasoning. We introduce a challenge dataset, ART, that consists of over 20k commonsense narrative contexts and 200k explanations. Based on this dataset, we conceptualize two new tasks -- (i) Abductive NLI: a multiple-choice question answering task for choosing the more likely explanation, and (ii) Abductive NLG: a conditional generation task for expl...

Retrieve, Caption, Generate: Visual Grounding for Enhancing Commonsense in Text Generation Models

Proceedings of the AAAI Conference on Artificial Intelligence

We investigate the use of multimodal information contained in images as an effective method for enhancing the commonsense of Transformer models for text generation. We perform experiments using BART and T5 on concept-to-text generation, specifically the task of generative commonsense reasoning, or CommonGen. We call our approach VisCTG: Visually Grounded Concept-to-Text Generation. VisCTG involves captioning images representing appropriate everyday scenarios, and using these captions to enrich and steer the generation process. Comprehensive evaluation and analysis demonstrate that VisCTG noticeably improves model performance while successfully addressing several issues of the baseline generations, including poor commonsense, fluency, and specificity.

CIS2: A Simplified Commonsense Inference Evaluation for Story Prose

2022

Transformers have been showing near-human performance on a variety of tasks, but they are not without their limitations. We discuss the issue of conflating results of transformers that are instructed to do multiple tasks simultaneously. In particular, we focus on the domain of commonsense reasoning within story prose, which we call contextual commonsense inference (CCI). We look at the GLUCOSE (Mostafazadeh et al., 2020) dataset and task for predicting implicit commonsense inferences between story sentences. Since the GLUCOSE task simultaneously generates sentences and predicts the CCI relation, there is a conflation in the results. Is the model really measuring CCI or is its ability to generate grammatical text carrying the results? In this paper, we introduce the task contextual commonsense inference in sentence selection (CIS2), a simplified task that avoids conflation by eliminating language generation altogether. Our findings emphasize the necessity of future work to disentangl...

Commonsense Reasoning with Implicit Knowledge in Natural Language

2021

Commonsense Reasoning is a research challenge studied from the early days of AI. In recent years, several natural language QA task have been proposed where commonsense reasoning is important. Two common approaches to this are (i) Use of well-structured commonsense present in knowledge graphs, and (ii) Use of progressively larger transformer language models. While acquiring and representing commonsense in a formal representation is challenging in approach (i), approach (ii) gets more and more resource-intensive. In this work, we take a middle ground where we use smaller language models together with a relatively smaller but targeted natural language text corpora. The advantages of such an approach is that it is less resource intensive and yet at the same time it can use unstructured text corpora. We define different unstructured commonsense knowledge sources, explore three strategies for knowledge incorporation, and propose four methods competitive to state-of-the-art methods to reas...