Evidence for a primate origin of zoonotic Helicobacter suis colonizing domesticated pigs (original) (raw)
Related papers
Helicobacter, 2016
Helicobacter suis (H. suis) is the most prevalent gastric non-H. pylori Helicobacter species in humans. This bacterium mainly colonizes the stomach of pigs, but it has also been detected in the stomach of nonhuman primates. The aim of this study was to obtain better insights into potential differences between pig- and primate-associated H. suis strains in virulence and pathogenesis. In vitro-isolated H. suis strains obtained from pigs, cynomolgus monkeys (Macaca fascicularis), and rhesus monkeys (Macaca mulatta) were used for intragastric inoculation of BALB/c mice and Mongolian gerbils. Nine weeks and six months later, samples of the stomach of inoculated and control animals were taken for PCR analysis and histopathological examination. The cynomolgus monkey-associated H. suis strain only colonized the stomach of mice, but not of Mongolian gerbils. All other H. suis strains colonized the stomach in both rodent models. In all colonized animals, severe gastric inflammation was induce...
Identification of Helicobacter suis in pig-producing regions of the United States
Journal of Swine Health and Production, 2013
Materials and methods: A polymerase chain reaction (PCR) assay was developed to quantitate total Helicobacter generic DNA and Helicobacter suis species-specific DNA in pig stomachs. Primers were derived from 16s ribosomal RNA (rRNA) gene sequences, selected on the basis of relative conservation and divergence of sequences across the various Helicobacter species. The assay was standardized using cloned 16s rRNA sequences and was initially tested with DNA isolated from cultured H suis. Gastric mucosal scrapings were collected from pigs in three geographic regions of the United States, including the North (Minnesota and Michigan), East Central (Iowa), and South (Oklahoma and North Carolina).
Molecular evidence of Helicobacter suis infection in pigs in Nigeria
African Journal of Biotechnology, 2018
Helicobacter suis mainly colonizes the stomach of pigs and occasionally infects humans. It is a prevalent cause of gastritis and gastric ulcers in both species. This study was designed to determine the colonization rate of H. suis in the stomach of pigs in Nigeria. Pig slaughter house surveys were conducted and stomach mucosa samples were collected from the fundus of the stomach of a total of 160 pigs in four locations in Nigeria (Lagos, Delta, Enugu and Plateau States). In each location, 50% of the samples were collected from stomachs with ulceration in the fundus, while the rest were from those with no gross lesions. DNA was extracted and PCR assay was conducted using standard primers. Data was analyzed by descriptive statistics and Chi-square test (p< 0.05). H. suis was detected in 8.75% of the samples across the four locations at a frequency of 15, 7.5, 10 and 2.5% in Lagos, Delta, Enugu and Plateau states, respectively. H suis was detected in 12.5 and 5% of the stomachs with...
2014
A number of Helicobacter species cause gastrointestinal or hepatic disease in humans, including H. pylori, gastric non-H. pylori helicobacters from animal origin and enterohepatic Helicobacter species. Little is known on the presence of Helicobacter species in great apes, our closest living relatives and potential reservoirs of microorganisms that might emerge in humans. The aim of the present study was to investigate the presence of gastric and enterohepatic Helicobacter species in African chimpanzees and gorillas. Fresh fecal samples were collected from wild endangered chimpanzees and critically endangered western lowland gorillas from different African National Parks, as well as wild-born captive animals from primate sanctuaries. Intact Helicobacter bacteria were demonstrated in feces by fluorescence in situ hybridization. Screening using a Helicobacter genus-specific PCR revealed the presence of Helicobacter DNA in the majority of animals in all groups. Cloning and sequencing of...
A number of Helicobacter species cause gastrointestinal or hepatic disease in humans, including H. pylori, gastric non-H. pylori helicobacters from animal origin and enterohepatic Helicobacter species. Little is known on the presence of Helicobacter species in great apes, our closest living relatives and potential reservoirs of microorganisms that might emerge in humans. The aim of the present study was to investigate the presence of gastric and enterohepatic Helicobacter species in African chimpanzees and gorillas. Fresh fecal samples were collected from wild endangered chimpanzees and critically endangered western lowland gorillas from different African National Parks, as well as wild-born captive animals from primate sanctuaries. Intact Helicobacter bacteria were demonstrated in feces by fluorescence in situ hybridization. Screening using a Helicobacter genus-specific PCR revealed the presence of Helicobacter DNA in the majority of animals in all groups. Cloning and sequencing of 16S rRNA gene fragments revealed a high homology to sequences from various zoonotic enterohepatic Helicobacter species, including H. cinaedi and H. canadensis. A number of gorillas and chimpanzees also tested positive using PCR assays designed to amplify part of the ureAB gene cluster and the hsp60 gene of gastric helicobacters. Phylogenetic analysis revealed the presence of a putative novel zoonotic gastric Helicobacter taxon/species. For this species, we propose the name ‘Candidatus Helicobacter homininae’, pending isolation and further genetic characterization. The presence of several Helicobacter species not only implies a possible health threat for these endangered great apes, but also a possible zoonotic transmission of gastric and enterohepatic helicobacters from these primate reservoirs to humans.
Isolation and characterization of Helicobacter suis sp. nov. from pig stomachs
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2008
A new cultivation method was successfully applied for the in vitro isolation of a hitherto uncultured spiral Helicobacter species associated with ulceration of the non-glandular stomach and gastritis in pigs and formerly described as 'Candidatus Helicobacter suis'. Three isolates, HS1 T , HS2 and HS3, were subcultured from the stomach mucosa of three pigs after slaughter and were analysed using a polyphasic taxonomic approach. The novel isolates grew on biphasic culture plates or very moist agar bases in microaerobic conditions and exhibited urease, oxidase and catalase activities. Sequencing of the 16S rRNA gene, the 23S rRNA gene, the partial hsp60 gene and partial ureAB genes confirmed that the strains present in the gastric mucosa of pigs constituted a separate taxon, corresponding to 'Helicobacter heilmannii' type 1 strains as detected in the gastric mucosa of humans and other primates. For all genes sequenced, the highest sequence similarities were obtained with Helicobacter felis, Helicobacter bizzozeronii and Helicobacter salomonis, Helicobacter species isolated from the gastric mucosa of dogs and cats, which have also been detected in the human gastric mucosa and which are commonly referred to as 'Helicobacter heilmannii' type 2. SDS-PAGE of whole-cell proteins of strains HS1 T , HS2 and HS3 differentiated them from other Helicobacter species of gastric origin. The results of the polyphasic taxonomic analysis confirmed that the novel isolates constitute a novel taxon corresponding to 'Helicobacter heilmannii' type 1 strains from humans and to 'Candidatus H. suis' from pigs. The name Helicobacter suis sp. nov. is proposed for the novel isolates with the type strain HS1 T (5LMG 23995 T 5DSM 19735 T ).
Journal of Bacteriology, 2004
Insights into bacterium-host interactions and genome evolution can emerge from comparisons among related species. Here we studied Helicobacter acinonychis (formerly H. acinonyx), a species closely related to the human gastric pathogen Helicobacter pylori. Two groups of strains were identified by randomly amplified polymorphic DNA fingerprinting and gene sequencing: one group from six cheetahs in a U.S. zoo and two lions in a European circus, and the other group from a tiger and a lion-tiger hybrid in the same circus. PCR and DNA sequencing showed that each strain lacked the cag pathogenicity island and contained a degenerate vacuolating cytotoxin (vacA) gene. Analyses of nine other genes (glmM, recA, hp519, glr, cysS, ppa, flaB, flaA, and atpA) revealed a ϳ2% base substitution difference, on average, between the two H. acinonychis groups and a ϳ8% difference between these genes and their homologs in H. pylori reference strains such as 26695.
Multilocus Sequence Typing of the Porcine and Human Gastric Pathogen Helicobacter suis
Journal of Clinical Microbiology, 2013
Helicobacter suis is a Gram-negative bacterium colonizing the majority of pigs, in which it causes gastritis and decreased daily weight gain. H. suis is also the most prevalent gastric non-Helicobacter pylori Helicobacter species in humans, capable of causing gastric disorders. To gain insight into the genetic diversity of porcine and human H. suis strains, a multilocus sequence typing (MLST) method was developed. In a preliminary study, 7 housekeeping genes (atpA, efp, mutY, ppa, trpC, ureI, and yphC) of 10 H. suis isolates cultured in vitro were investigated as MLST candidates. All genes, except the ureI gene, which was replaced by part of the ureAB gene cluster of H. suis, displayed several variable nucleotide sites. Subsequently, internal gene fragments, ranging from 379 to 732 bp and comprising several variable nucleotide sites, were selected. For validation of the developed MLST technique, gastric tissue from 17 H. suis-positive pigs from 4 different herds and from 1 H. suis-infected human patient was used for direct, culture-independent strain typing of H. suis. In addition to the 10 unique sequence types (STs) among the 10 isolates grown in vitro, 15 additional STs could be assigned. Individual animals were colonized by only 1 H. suis strain, whereas multiple H. suis strains were present in all herds tested, revealing that H. suis is a genetically diverse bacterial species. The human H. suis strain showed a very close relationship to porcine strains. In conclusion, the developed MLST scheme may prove useful for direct, culture-independent typing of porcine and human H. suis strains.